收藏 分享(赏)

《名师伴你行》人教A版学桉五+函数的表示法一.ppt

上传人:wspkg9802 文档编号:4786446 上传时间:2019-01-12 格式:PPT 页数:21 大小:811.50KB
下载 相关 举报
《名师伴你行》人教A版学桉五+函数的表示法一.ppt_第1页
第1页 / 共21页
《名师伴你行》人教A版学桉五+函数的表示法一.ppt_第2页
第2页 / 共21页
《名师伴你行》人教A版学桉五+函数的表示法一.ppt_第3页
第3页 / 共21页
《名师伴你行》人教A版学桉五+函数的表示法一.ppt_第4页
第4页 / 共21页
《名师伴你行》人教A版学桉五+函数的表示法一.ppt_第5页
第5页 / 共21页
点击查看更多>>
资源描述

1、学点一,学点二,学点三,学点四,学点五,1.通过列出自变量与对应函数值的表格来表达函数关系的方法叫 . 2.用图象来表示两个变量之间的函数关系的方法叫 . 3.在函数y=f(x)(xA)中,f(x)是用代数式来表达的,这种表示函数的方法叫 .,列表法,图象法,解析法,学点一 列表法,下表给出的y与x的关系,是函数关系吗?,【分析】判断是否是函数关系,首先看问题是否具备函数的三要素,其次判断是否具备函数的基本特性.,【解析】x,y的取值范围分别是A=1 921,1 927,1 949,1 997,1 999,2 010x|1 949x1 997,B=1,2,3,4,5,6,7, 它们都是非空数集

2、,且按照表格中给出的对应关系,对任意的xA,在B中都有唯一确定的值与之对应,所以y是x的函数.,【评析】判断两变量是否具有函数关系,应以定义判定,即从函数的基本特征入手.,下表所示为x与y间的关系:那么它的解析式是( ) A.y=100-10x B.y=100-5x2 C.y=100-5x-5x2 D.y=20-x-x2,C,【评析】函数的图象是函数的直观描述,结合学过的基本初等函数,可作出一般的函数图象.,学点二 图象法,【分析】函数图象表示的是表示函数关系的两个变量之间的关系,故可由函数定义判定.,函数f(x)=x+ 的图象是( ),【解析】f(x)=x+ = ,结合图象知选C.,C,作出

3、下列函数的图象. (1)y=1-x(xZ); (2)y=2x2-4x-3(0x3).,(1)这个函数的图象由一些点组成,这些点都在直线y=1-x上(xZ,从而yZ),这些点称为整点(如图甲). (2)0x3,这个函数的图象是抛物线y=2x2-4x-3介于0x3之间的一段曲线(如图乙).,学点三 求函数解析式,(1)如果 ,则f(x)= ; (2)如果 ,则f(x+1)= ; (3)如果ff(x)=2x-1,则一次函数f(x)= ; (4)如果函数f(x)满足方程af(x)+ =ax,xR,且x0,a为常数,且a1,则f(x)= .,【分析】求f(x)的关键就在于弄清相对于“x”而言, “f”是

4、一种怎样的对应关系.,【解析】(1) .(2)f(x)=x2+4, f(x+1)=(x+1)2+4. (3)f(x)为一次函数,设f(x)=kx+b(k0), ff(x)=f(kx+b)=k(kx+b)+b=k2x+kb+b=2x-1. 比较系数得或 .,(4) ,用 替换上式中的x得由可得,【评析】求f(x)解析式的方法比较多,如上述例子中就分别用了换元法、配方法、待定系数法、解方程组的方法,其他方法请试用. 换元法求f(x)是常用的方法,但要特别注意正确确定中间变量的取值范围,否则就不能正确确定f(x)的定义域. (4)题的解法基于这样一种认识:函数是定义域到值域上的映射,定义域中的每一个

5、元素都应满足函数表达式.在已知条件下,x满 足已知的式子,那么 在定义域内也满足这个式子,这样就得到两个关于f(x)与 的方程,因而能解出f(x).,(1)已知f( )=x+2 ,求f(x); (2)已知 求f(x); (3)已知函数f(x)满足 ,求f(x)的表达式.,(1)解法一:解法二:令t= +1,则x=(t-1)2(t1),代入原式有f(t)=(t-1)2+2(t-1)=t2-2t+1+2t-2=t2-1,f(x)=x2-1(x1).,学点四 由函数图象求函数解析式,已知函数f(x)在-1,2上的图象如图所示,求f(x)的解析式.,【分析】由图象特点先确定函数类型,再求解析式.,【评

6、析】熟练掌握学过的函数图象,有利于这类问题的解决.,【解析】当-1x0时,设y=ax+b, 过点(-1,0)和(0,1),同样,当0x2时,有 ,函数y=f(x)的图象如图所示,则函数y=f(x)的解析式为( ) A.f(x)=(x-a)2(b-x) B.f(x)=(x-a)2(x+b) C.f(x)=-(x-a)2(x+b) D.f(x)=(x-a)2(x-b),(由图象知,当x=b时,f(x)=0,故排除B,C;又当xb时,f(x)0.故排除D. 故应选A.),A,学点五 应用问题,用长为l的铁丝弯成下部为矩形,上部为半圆形的框架, 若矩形底边长为2x,求此框架围成的面积y与x的函数 关系

7、式,并写出其定义域.,【分析】要表示y,需先用x表示出矩形的另一边长.,【解析】AB=2x,弧长CD =x,AD= . y=函数关系式为 ,其定义域为 .,【评析】由实际问题求函数解析式,先进行分析,找出 所需的中间量,如本题中的AD.同时要十分重视函数的定义域.,某农产品去年各季度的市场价格如下表:今年某公司计划按去年各季度市场价的“最佳近似值m”(m是与上表中各售价差的平方和取最小值时的值)收购该种农产品,并按每100元纳税10元(又称征税率为10个百分点),计划可收购a万担.政府为了鼓励收购公司多收购这种农产品,决定将税率降低x个百分点,预测收购量可增加2x个百分点. (1)根据题中条件

8、填空,m= 元/担; (2)写出税收y(万元)与x的函数关系式.,设平方和为y,则 (1)y=(m-195.5)2+(m-200.5)2+(m-204.5)2+(m-199.5)2= 4m2-2(195.5+200.5+204.5+199.5)m+195.52+200.52+ 204.52+199.52取最小值时, m= =200. 故应填200. (2)降低税率后的税率为(10-x)%,农产品的收购量为a(1+2x%)万担,收购总金额200a(1+2x%),依题意得 y=200a(1+2x%)(10-x)%= a(100+2x)(10-x) = a(100+2x)(10-x)(0x10).,

9、1.求函数解析式应注意什么问题? (1)由具体的实际问题建立函数关系求解析式,一般是通过研究自变量、函数及其他量之间的等量关系,将函数用自变量和其他量的关系表示出来.需要注意的是,一定不能忘记确定自变量的取值范围. (2)由含有函数f(x)的关系式求f(x),一般采用配凑法、换元法、待定系数法及解方程组等方法.,2.简单函数图象的画法有哪些? (1)描点法.这是作函数图象的基本方法.用描点法作函数图象的基本操作步骤:首先就函数的关系式探讨函数的一些性质,如定义域、值域以及后面要学到的奇偶性、单调性等,从而对函数图象的轮廓有一个大致的认识;然后选点,将x与y的一些对应值用表列出(对一些不熟悉的函

10、数的值,有条件的可用函数计算器计算得出);再将表中的x,y的对应值作为点的坐标在坐标系中描出;最后用平滑的曲线依次连结各点即可. (2)函数图象变换法.为了简化函数图象的作法,我们可以利用后面将要学到的一些知识,利用图象的点对称、轴对称以及图象的移动等变换方法快捷地将函数的图象画出.,1.把两个变量之间的函数关系,用一个等式来表示,这个等式就叫做这个函数的解析表达式,简称解析式.用解析法表示函数的优点是函数关系清楚,易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质.求函数f(x)的解析式常用的方法: (1)如果已知函数式较简单时,可用直接法求解. (2)如果已知复合函数fg(x)的表达式时,可用换元法求解,但要注意在换元时引起的定义域的变化.最后结果要注明所求函数的定义域. (3)如果已知函数的种类时,可用待定系数法求解. 2.列表法就是列出表格来表示两个变量的函数关系.其优点为不必通过计算就知道当自变量取某些值时函数的对应值. 3.图象法就是用函数图象表示两个变量之间的关系.其优点为能直观形象地表示出函数的变化情况.,祝同学们学习上天天有进步!,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 实用文档 > 统计图表

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报