1、(答题时间:30 分钟)1. “神舟十号”飞船再次与“天宫一号”进行交会对接。三位航天员入住“天宫”完成一系列实验。“神舟十号”与“天宫一号”对接后做匀速圆周运动,运行周期为 90 分钟。对接后“天宫一号”的( )A. 运行速度大于第一宇宙速度B. 加速度大于赤道上静止物体随地球自转的加速度C. 角速度为地球同步卫星角速度的 16 倍D. 航天员可以用天平测出物体的质量2. “神舟三号”飞船顺利发射升空后,在离地面 340km 的圆轨道上运行了 108 圈。关于“神舟三号”的发射与“神舟三号”在圆轨道运行的描述,下面说法正确的是( )A. 火箭加速发射升空阶段,座椅对宇航员的作用力大于宇航员对
2、座椅的作用力B. 火箭加速发射升空阶段,宇航员对座椅的作用力大于宇航员的重力C. “神舟三号”在圆轨道上运行时,宇航员所受的万有引力远比在地面上小,可以忽略D. 飞船内所有物体在绕地球做匀速圆周运动,它们所需要的向心力由万有引力提供3. 关于万有引力定律及其表达式 ,下列说法中正确的是( )21rmGFA. 对于不同物体,G 取值不同B. G 是万有引力常量,由实验测得C. 两个物体彼此所受的万有引力方向相同D. 两个物体之间的万有引力是一对平衡力4. 已知地球的质量为 M,月球的质量为 m,月球绕地球运行的轨道半径为 r,周期为T,万有引力常量为 G,则月球绕地球运转轨道处的重力加速度大小等
3、于( )A. B. C. D. 2rm2r24TT245. 火星的质量和半径分别约为地球的 和 ,地球表面的重力加速度为 g,则火星表10面的重力加速度约为( )A. 0.2g B. 0.4g C. 2.5g D. 5g6. 2010 年 10 月 1 日,我国成功发射了“嫦娥二号”探月卫星,在卫星飞赴月球的过程中,随着它与月球间距离的减小,月球对它的万有引力将( )A. 变小 B. 变大 C. 先变小后变大 D. 先变大后变小7. 中子星是恒星演化过程的一种可能结果,它的密度很大。现有一中子星,观测到它的自转周期为 T s。问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转301而瓦
4、解。计算时星体可视为均匀球体。(引力常数 G6.67 /kg )103m2s8. 由于地球自转的影响,地球表面的重力加速度会随纬度的变化而有所不同。已知地球表面两极处的重力加速度大小为 g0,在赤道处的重力加速度大小为 g,地球自转的周期为T,引力常量为 G。假设地球可视为质量均匀分布的球体。求:(1)质量为 m 的物体在地球北极所受地球对它的万有引力的大小;(2)地球的半径;(3)地球的密度。1. BC 解析:第一宇宙速度为近地轨道上的运行速度,轨道半径等于地球半径,因为“天宫一号”轨道半径大于地球半径,根据 ,故其速度小于第一宇宙速度,故rGMvA 错误;赤道上物体随地球自转的加速度 ,“
5、天宫一号”的加速度同同RTa)2(,根据轨道半径和周期关系,可知天宫一号加速度大于赤道上静止物体随同同同rTa2)(地球自转的加速度,故 B 正确;根据 ,则: ,所以T2169024同同TC 正确;在“天宫一号”上航天员等物体均处于完全失重状态,天平不能使用,故 D 错误。故选 BC。2. BD 解析:火箭加速发射升空阶段,加速度向上,宇航员处于超重状态,所以宇航员对座椅的作用力大于宇航员的重力,而座椅对宇航员的作用力和宇航员对座椅的作用力是一对相互作用力,故大小相等,所以 A 错误 B 正确;“神舟三号”在圆轨道上运行时,宇航员所受的万有引力完全充当向心力,不能忽略,C 错误 D 正确3.
6、 B 解析:公式中的 G 是引力常量,适用于任何物体,故 A 错误;G 是万有引力常量,是由卡文迪许通过实验测出的,故 B 正确;两个物体间的万有引力遵守牛顿第三定律,总是大小相等,方向相反,是一对作用力和反作用力。故 CD 错误;4. BD 解析:月球绕地球做匀速圆周运动,由地球的万有引力提供月球的向心力,则有:解得: ,故 BD 正确。224TrmarMG224TrMa5. B 解析:根据星球表面的万有引力等于重力得: ,解得: ;火mgRG2 2RGM星的质量和半径分别约为地球的 和 ,所以火星表面的重力加速度: 102 g2)1(0,故 B 正确。g4.06. B 解析:根据万有引力定
7、律 ,万有引力与物体之间的距离的二次方成反2rMmGF比,故在卫星飞赴月球的过程中,随着它与月球间距离 r 的减小,月球对它的万有引力 F将变大,故 B 正确,7. 解:设想中子星赤道处一小块物质,只有当它受到的万有引力大于或等于它随星体所需的向心力时,中子星才不会瓦解。设中子星的密度为 ,质量为 M,半径为 R,自转角速度为 ,位于赤道处的小物块质量为 m,则由万有引力定律有 ,而 mRG2234,RT由以上各式得 ,代入数据解得:3T1/07.mkg8. 解:(1)质量为 m 的物体在两极所受地球的引力等于其所受的重力。即 Fmg 0。(2)设地球的质量为 M,半径为 R,在赤道处随地球做圆周运动物体的质量为 m。物体在赤道处随地球自转做圆周运动的周期等于地球自转的周期,轨道半径等于地球半径。根据万有引力定律和牛顿第二定律有 mg m R 2G24T在赤道的物体所受地球的引力等于其在两极所受的重力,即 mg 0 MG解得 R 。 204)(Tg(3)因为 ,所以 MmG0Rg20又因地球的体积 V ,所以 。3 )(302GTV