收藏 分享(赏)

2017秋人教版八年级数学上册闯关课件 13.3 等腰三角形 13.3.2 等边三角形 第1课时 等边三角形的性质和判定.ppt

上传人:weiwoduzun 文档编号:4499968 上传时间:2018-12-31 格式:PPT 页数:20 大小:268KB
下载 相关 举报
2017秋人教版八年级数学上册闯关课件 13.3 等腰三角形 13.3.2 等边三角形 第1课时 等边三角形的性质和判定.ppt_第1页
第1页 / 共20页
2017秋人教版八年级数学上册闯关课件 13.3 等腰三角形 13.3.2 等边三角形 第1课时 等边三角形的性质和判定.ppt_第2页
第2页 / 共20页
2017秋人教版八年级数学上册闯关课件 13.3 等腰三角形 13.3.2 等边三角形 第1课时 等边三角形的性质和判定.ppt_第3页
第3页 / 共20页
2017秋人教版八年级数学上册闯关课件 13.3 等腰三角形 13.3.2 等边三角形 第1课时 等边三角形的性质和判定.ppt_第4页
第4页 / 共20页
2017秋人教版八年级数学上册闯关课件 13.3 等腰三角形 13.3.2 等边三角形 第1课时 等边三角形的性质和判定.ppt_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、第十三章 轴对称,八年级上册数学(人教版),133 等腰三角形,133.2 等边三角形,第1课时 等边三角形的性质和判定,知识点1:等边三角形的性质 1如图,ABC是等边三角形,点D在AC边上,DBC35,则ADB的度数为( ) A25 B60 C85 D95,D,2如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是( ) A180 B220 C240 D300,C,3如图,四边形ABCD是正方形,PAD是等边三角形,则BPC的度数为( ) A20 B30 C35 D40,B,4等边三角形ABC的两条角平分线BD与CE交于点O,则BOC的度数为_ 5如图,已知ABC是等边三角

2、形,点B,C,D,E在同一直线上,且CGCD,DFDE,则E_度,120,15,6如图,在等边三角形ABC中,D是BC边的中点,以AD为边作等边三角形ADE.求CAE的度数 解:ABC为等边三角形,由ABAC,D为BC的中点得AD平分BAC,DAC30,又DAE60,CAE30,知识点2:等边三角形的判定 7已知a,b,c是三角形的三边长,且满足(ab)2|bc|0,那么这个三角形一定是( ) A直角三角形 B等边三角形 C钝角三角形 D等腰直角三角形 8等腰三角形补充下列条件后,仍不一定成为等边三角形的是( ) A有一个内角是60 B有一个外角是120 C有两个角相等 D腰与底边相等,B,C

3、,9如图,ABC是等边三角形,点D,E,F分别在AB,BC,AC上,且DEBC,EFAC,FDAB,试判断DEF是否为等边三角形,并说明理由 解:DEF是等边三角形,可证三个内角均为60,易错点:对有一个角是60的等腰三角形是等边三角形的判定方法不理解导致出错 10在ABC中,若ABBCCA,则ABC为等边三角形;若ABC,则ABC是等边三角形;有两个角都是60的三角形是等边三角形;有一个角是60的等腰三角形是等边三角形上述结论中正确的有( ) A1个 B2个 C3个 D4个,D,11(2017山西模拟)如图,直线lmn,等边ABC的顶点B,C分别在直线n和m上,边BC与直线n所夹的角为25,

4、则的度数为( ) A25 B45 C35 D30,C,12三个等边三角形的位置如图所示,若350,则12_,130,13如图,ABC为等边三角形,12,BDCE,则ADE是_三角形,等边,14如图,在等边三角形ABC的AC边上取中点D,在BC的延长线上取一点E,使CECD.求证:BDDE. 解:ABC是等边三角形,ABCACB60,D为AC中点,DBC30.CECD,ECDE ACB30,DBCE,BDDE,15如图,在等边ABC中,D是AB边上的动点,以CD为一边向上作等边EDC,连接AE.求证:AEBC. 解:由SAS可推得ACEBCD,CAEB,又BACB,CAEACB,AEBC,16如

5、图,ABC是等边三角形,过AC边上的点D作DGBC,交AB于点G,在GD的延长线上取点E,使DEDC,连接AE,BD.求证:AGEDAB. 解:ABC为等边三角形,ABCC60,又DGBC,AGDABC60,ADGC60,AGD为等边三角形,由DEDC易推出GECAAB,又AGEBAD,AGAD,AGEDAB(SAS),17如图,C是线段AB上除点A,B外的任意一点,分别以AC,BC为边在线段AB的同侧作等边ACD和等边BCE,连接AE交DC于点M,连接BD交CE于点N,连接MN. (1)求证:AEBD; (2)求证:MNAB.,解:(1)ACDBCE60,ACDDCEBCEDCE,即ACEDCB,又ACCD,CECB,ACEDCB(SAS),AEBD (2)由题意易求得DCN60ACM,由(1)知CDNCAM,又ACCD,ACMDCN(SAS),CMCN,MCN为等边三角形,MNCNCB60,MNAB,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报