1、1.1.1 正弦定理(二)课时目标1熟记正弦定理的有关变形公式;2能够运用正弦定理进行简单的推理与证明1正弦定理: 2R 的常见变形:asin A bsin B csin C(1)sin Asin Bsin Cabc;(2) 2R;asin A bsin B csin C a b csin A sin B sin C(3)a2Rsin _A, b2Rsin_B,c2Rsin _C;(4)sin A ,sin B ,sin C .a2R b2R c2R2三角形面积公式:S absin C bcsin A casin B.12 12 12一、选择题1在ABC 中,sin Asin B,则ABC 是
2、( )A直角三角形 B锐角三角形C钝角三角形 D等腰三角形答案 D2在ABC 中,若 ,则ABC 是( )acos A bcos B ccos CA直角三角形 B等边三角形C钝角三角形 D等腰直角三角形答案 B解析 由正弦定理知: ,sin Acos A sin Bcos B sin Ccos Ctan Atan Btan C,A BC .3在ABC 中,sin A ,a10,则边长 c 的取值范围是 ( )34A. B(10 ,)(152, )C(0,10) D.(0,403答案 D解析 , c sin C.csin C asin A 403 40300),b c4 c a5 a b6则Er
3、ror! ,解得Error! .sin Asin Bsin Cabc753.6已知三角形面积为 ,外接圆面积为 ,则这个三角形的三边之积为( )14A1 B2C. D412答案 A解析 设三角形外接圆半径为 R,则由 R2,得 R1,由 S absin C ,abc 1.12 abc4R abc4 14二、填空题7在ABC 中,已知 a3 ,cos C ,S ABC 4 ,则 b_.213 3答案 2 3解析 cos C ,sin C ,13 223 absin C4 ,b2 .12 3 38在ABC 中,角 A,B ,C 的对边分别为 a,b,c,已知 A60,a ,b1,3则 c_.答案
4、2解析 由正弦定理 ,得 ,asin A bsin B 3sin 60 1sin Bsin B ,故 B30或 150.由 ab,12得 AB,B30,故 C90,由勾股定理得 c2.9在单位圆上有三点 A,B,C ,设ABC 三边长分别为 a,b,c,则 asin A b2sin B_.2csin C答案 7解析 ABC 的外接圆直径为 2R2, 2R 2,asin A bsin B csin C 2147.asin A b2sin B 2csin C10在ABC 中,A60,a6 ,b12,S ABC 18 ,则3 3_,c_.a b csin A sin B sin C答案 12 6解析
5、 12.a b csin A sin B sin C asin A 6332S ABC absin C 6 12sin C18 ,12 12 3 3sin C , 12,c6.12 csin C asin A三、解答题11在ABC 中,求证: .a ccos Bb ccos A sin Bsin A证明 因为在ABC 中, 2R,asin A bsin B csin C所以左边2Rsin A 2Rsin Ccos B2Rsin B 2Rsin Ccos A 右边sinB C sin Ccos BsinA C sin Ccos A sin Bcos Csin Acos C sin Bsin A所
6、以等式成立,即 .a ccos Bb ccos A sin Bsin A12在ABC 中,已知 a2tan Bb 2tan A,试判断ABC 的形状解 设三角形外接圆半径为 R,则 a2tan Bb 2tan A a2sin Bcos B b2sin Acos A 4R2sin2 Asin Bcos B 4R2sin2 Bsin Acos Asin Acos A sin Bcos Bsin 2Asin 2B2A2B 或 2A2BAB 或 A B .2ABC 为等腰三角形或直角三角形能力提升13在ABC 中,B60,最大边与最小边之比为( 1)2,则最大角为( )3A45 B60 C75 D90
7、答案 C解析 设 C 为最大角,则 A 为最小角,则 AC120, sin Csin A sin(120 A)sin Asin 120 cos A cos 120sin Asin A ,32tan A 12 3 12 32 12tan A1,A45 ,C75.14在ABC 中,a,b,c 分别是三个内角 A,B,C 的对边,若 a2,C ,4cos ,求ABC 的面积 S.B2 255解 cos B 2cos 2 1 ,B2 35故 B 为锐角,sin B .45所以 sin Asin(BC)sin .(34 B) 7210由正弦定理得 c ,asin Csin A 107所以 SABC acsin B 2 .12 12 107 45 871在ABC 中,有以下结论:(1)ABC ;(2)sin(AB )sin C,cos(AB)cos C;(3) ;A B2 C2 2(4)sin cos ,cos sin ,tan .A B2 C2 A B2 C2 A B2 1tan C22借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明