1、原子分子物理学-光学,原子物理 原子物理学是研究原子的结构、运动规律及相互作用的物理学分支。它主要研究:原子的电子结构;原子光谱;原子之间或与其他物质的碰撞过程和相互作用。 量子论和相对论为原子物理学奠定了微观理论基础。 20世纪初,人们对原子本身的结构和内部运动规律才有了比较清楚的认识,之后才逐步建立起近代的原子物理学。 1897年前后,科学家们逐渐确定了电子的各种基本特性,并确立了电子是各种原子的共同组成部分。通常,原子是电中性的,而既然一切原子中都有带负电的电子,那么原子中就必然有带正电的物质。20世纪初,对这一问题曾提出过两种不同的假设。,1904年,汤姆逊提出原子中正电荷以均匀的体密
2、度分布在一个大小等于整个原子的球体内,而带负电的电子则一粒粒地分布在球内的不同位置上,分别以某种频率振动着,从而发出电磁辐射。这个模型被形象的比喻为“果仁面包”模型,不过这个模型理论和实验结果相矛盾,很快就被放弃了。 1911年卢瑟福在他所做的粒子散射实验基础上,提出原子的中心是一个重的带正电的核,与整个原子的大小相比,核很小。电子围绕核转动,类似大行星绕太阳转动。这种模型叫做原子的核模型,又称行星模型。从这个模型导出的结论同实验结果符合的很好,很快就被公认了。 绕核作旋转运动的电子有加速度,根据经典的电磁理论,电子应当自动地辐射能量,使原子的能量逐渐减少、辐射的频率逐渐改变,因而发射光谱应是
3、连续光谱。电子因能量的减少而循螺线逐渐接近原子核,最后落到原子核上,所以原子应是一个不稳定的系统。 但事实上原子是稳定的,原子所发射的光谱是线状的,而不是连续的。这些事实表明:从研究宏观现象中确立的经典电动力学,不适用于原子中的微观过程。这就需要进一步分析原子现象,探索原子内部运动的规律性,并建立适合于微观过程的原子理论。,1913年,丹麦物理学家玻尔在卢瑟福所提出的核模型的基础上,结合原子光谱的经验规律,应用普朗克于1900年提出的量子假说,和爱因斯坦于1905年提出的光子假说,提出了原子所具有的能量形成不连续的能级,当能级发生跃迁时,原子就发射出一定频率的光的假说。 1924年,德布罗意提
4、出微观粒子具有波粒二象性的假设,以后的观察证明,微观粒子具有波的性质。1926年薛定谔在此基础上建立了波动力学。同时,其他学者,如海森伯、玻恩、狄喇克等人,从另外途径建立了等效的理论,这种理论就是现在所说的量子力学,它能很好地解释原子现象。 20世纪的前30年,原子物理学处于物理学的前沿,发展很快,促进了量子力学的建立,开创了近代物理的新时代。 20世纪50年代末期,由于空间技术和空间物理学的发展,工程师和科学家们发现,只使用已有的原子物理学知识来解决空间科学和空间技术问题已是很不够了,从而产生了量子电动力学-描述微观电磁现象遵循的规律以及量子统计力学。 近多年来,对原子碰撞的研究工作进展很快
5、,已成为原子物理学的一个主要发展方向。目前原子碰撞研究的课题非常广泛,涉及光子、电子、离子、中性原子等与原子和分子碰撞的物理过程。与原子碰撞的研究相应,发展了电子束、离子束、粒子加速器、同步辐射加速器、激光器等激光源、各种能谱仪等测谱设备,以及电子、离子探测器、光电探测器和微弱信号检测方法,还广泛地应用了核物理技术和光谱技术,也发展了新的理论和计算方法。电子计算机的应用,加速了理论计算和实验数据的处理。,原子光谱与激光技术的结合,使光谱分辨率达到了百万分之一赫兹以下,时间分辨率接近万亿分之一秒量级,空间分辨达到光谱波长的数量级,实现了光谱在时间、空间上的高分辨。由于激光的功率密度已达到一千万瓦
6、每平方厘米以上,光波电场场强已经超过原子的内场场强,强激光与原子相互作用产生了饱和吸收和双光子、多光子吸收等现象,发展了非线性光谱学,从而成为原了物理学中另一个十分活跃的研究方向。 极端物理条件(高温、低温、高压、强场等)下和特殊条件(高激发态、高离化态)下原子的结构和物性的研究,也已成为原子物理研究中的重要领域。 原子是从宏观到微观的第一个层次,是一个重要的中间环节。物质世界这些层次的结构和运动变化,是相互联系、相互影响的,对它们的研究缺一不可,很多其他重要的基础学科和技术科学的发展也都要以原子物理为基础,例如化学、生物学、空间物理、天体物理、物理力学等。激光技术、核聚变和空间技术的研究也要
7、原子物理提供一些重要的数据,因此研究和发展原子物理这门学科有着十分重要的理论和实际意义。,分子物理 分子物理学是研究分子的结构,分子的物理性质,分子间的相互作用;并以此为基础研究气体、液体、固体的物理性质,特别是与热现象有关的物理性质的一个物理学分支。分子物理学与物理学的其他分支如原子物理学、凝聚态物理学、物理力学,以及物理化学、化学动力学、量子化学等都有密切的联系。 分子结构涉及的不仅是组成它的各个原子(确切地说是原子核)的平衡几何配置,更重要的是分子各组成部分的相互作用化学键合。分子的物理性质与分子的化学结构有关,因此研究分子的性质可以确定其化学结构。 量子力学是研究化学键本质、分子的物理
8、性质,以及分子间相互作用的基本理论。1930年以来,量子力学在这些问题的理论解释上有很大的进展。分子的量子力学量子化学,是近代理论化学活跃的前沿之一。应用量子化学原理并配合电子计算机技术,直接计算分子的能级、状态波函数以及其他物理性质,已取得了显著的成就。 分子物理学从多方面研究分子的物理性质。它研究分子中原子的相对振动、分子的转动、分子中电子的运动,以及分子间力所产生的现象等。分子光谱是用来研究分子结构的一种重要手段,它提供了大量关于分子结构和分子动力学的知识,这些光谱及其量子力学解释之间的相符,是历史上证实量子理论的重要依据。射频和微波波谱学、原子束和分子束和激光光谱学等技术,能高度精确地
9、测量这类光谱的精细和超精细结构,从而可制定核自旋、核电四板矩以及原子核质量。,对于分子的物理性质的研究还包括研究分子的电磁性质(分子在电场和磁场中的行为),即分子的极化率和磁化率,以及分子的热学性质等。用 X射线衍射、中子衍射等技术可直接确定分子的结构。已经发展起来的光电子能谱等,也是研究分子物理性质的有力实验手段。 分子物理学从研究物质的分子结构和分子问的相互作用出发,研究物质的热学性质和聚集状态,包括状态方程(体积、温度和压强之间的关系)、各种热力学函数、液体和固体的表面层现象、表面吸附、相干衡和相变,以及扩散、热传导和粘滞性等输运现象,等等。由于这些现象和性质与大量分子的整体运动状态有关
10、,分子物理学中还广泛利用热力学的定律和统计物理学的理论。,光学 研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。 光学的发展史可追溯到2000多年前。 自墨经开始,公元11世纪阿拉伯人伊本海赛木发明透镜;公元1590年到17世纪初,詹森和李普希同时独立地发明显微镜;一直到17世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观察结果,归结为今天大家所惯用的反射定律和折射定律。 1665年,牛顿进行太阳光的实验,它把太阳光分解成简单的组成部分,这些成分形成一个颜色按一定顺序排列的光分布光谱。它使人们第一次接触到光的客观的和
11、定量的特征,各单色光在空间上的分离是由光的本性决定的。 牛顿还发现了把曲率半径很大的凸透镜放在光学平玻璃板上,当用白光照射时,则见透镜与玻璃平板接触处出现一组彩色的同心环状条纹;当用某一单色光照射时,则出现一组明暗相间的同心环条纹,后人把这种现象称牛顿环。借助这种现象可以用第一暗环的空气隙的厚度来定量地表征相应的单色光。,牛顿在发现这些重要现象的同时,根据光的直线传播性,认为光是一种微粒流。微粒从光源飞出来,在均匀媒质内遵从力学定律作等速直线运动。牛顿用这种观点对折射和反射现象作了解释。 惠更斯创立了光的波动说。提出“光同声一样,是以球形波面传播的”。并且指出光振动所达到的每一点,都可视为次波
12、的振动中心、次波的包络面为传播波的波阵面(波前)。在整个18世纪中,光的微粒流理论和光的波动理论都被粗略地提了出来,但都不很完整。 19世纪初,波动光学初步形成,其中托马斯杨圆满地解释了“薄膜颜色”和双狭缝乾涉现象。菲涅耳于1818年以杨氏乾涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的乾涉和衍射现象,也能解释光的直线传播。 在进一步的研究中,观察到了光的偏振和偏振光的干涉。为了解释这些现象,菲涅耳假定光是一种在连续媒质(以太)中传播的横波。为说明光在各不同媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂
13、的假设。此外,还必须给以太以更特殊的性质才能解释光不是纵波。如此性质的以太是难以想象的。,1846年,法拉第发现了光的振动面在磁场中发生旋转;1856年,韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。他们的发现表明光学现象与磁学、电学现象间有一定的内在关系。 1860年前后,麦克斯韦指出,电场和磁场的改变,不能局限于空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着,光就是这样一种电磁现象。这个结论在1888年为赫兹的实验证实。然而,这样的理论还不能说明能产生象光这样高的频率的电振子的性质,也不能解释光的色散现象。到了1896年洛伦兹创立电子论,才解释了发光
14、和物质吸收光的现象,也解释了光在物质中传播的各种特点,包括对色散现象的解释。 对于像炽热的黑体的辐射中能量按波长分布这样重要的问题,洛伦兹理论还不能给出令人满意的解释。并且,如果认为洛伦兹关于以太的概念是正确的话,则可将不动的以太选作参照系,使人们能区别出绝对运动。而事实上,1887年迈克耳逊用干涉仪测“以太风”,得到否定的结果,这表明到了洛伦兹电子论时期,人们对光的本性的认识仍然有不少片面性。 1900年,普朗克从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。他认为各种频率的电磁波,包括光,只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光子。,量子论不仅
15、很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。量子论不但给光学,也给整个物理学提供了新的概念,所以通常把它的诞生视为近代物理学的起点。 1905年,爱因斯坦运用量子论解释了光电效应。他给光子作了十分明确的表示,特别指出光与物质相互作用时,光也是以光子为最小单位进行的。 1905年9月,德国物理学年鉴发表了爱因斯坦的“关于运动媒质的电动力学”一文。第一次提出了狭义相对论基本原理,文中指出,从伽利略和牛顿时代以来占统治地位的古典物理学,其应用范围只限于速度远远小于光速的情况,而他的新理论可解释与很大运动速度有关的过程的特征,根本放弃了以太的概念,圆
16、满地解释了运动物体的光学现象。 这样,在20世纪初,一方面从光的干涉、衍射、偏振以及运动物体的光学现象确证了光是电磁波;而另一方面又从热辐射、光电效应、光压以及光的化学作用等无可怀疑地证明了光的量子性微粒性。 1922年发现的康普顿效应,1928年发现的喇曼效应,以及当时已能从实验上获得的原子光谱的超精细结构,它们都表明光学的发展是与量子物理紧密相关的。光学的发展历史表明,现代物理学中的两个最重要的基础理论量子力学和狭义相对论都是在关于光的研究中诞生和发展的。,此后,光学开始进入了一个新的时期,以致于成为现代物理学和现代科学技术前沿的重要组成部分。其中最重要的成就,就是发现了爱因斯坦于1916
17、年预言过的原子和分子的受激辐射,并且创造了许多具体的产生受激辐射的技术。 爱因斯坦研究辐射时指出,在一定条件下,如果能使受激辐射继续去激发其他粒子,造成连锁反应,雪崩似地获得放大效果,最后就可得到单色性极强的辐射,即激光。1960年,制成第一台可见光的红宝石激光器;同年制成氦氖激光器;1962年产生了半导体激光器;1963年产生了可调谐染料激光器。激光具有极好的单色性、高亮度和良好的方向性。,光学的另一个重要的分支是由成像光学、全息术和光学信息处理组成的。最早可追溯到1873年阿贝提出的显微镜成像理论,和1906年波特为之完成的实验验证;1935年泽尔尼克提出位相反衬观察法,并依此由蔡司工厂制
18、成相衬显微镜,为此他获得了1953年诺贝尔物理学奖;1948年伽柏提出的现代全息照相术的前身波阵面再现原理,为此,伽柏获得了1971年诺贝尔物理学奖。 自20世纪50年代以来,人们开始把数学、电子技术和通信理论与光学结合起来,给光学引入了频谱、空间滤波、载波、线性变换及相关运算等概念,更新了经典成像光学,形成了所谓“博里叶光学”。再加上由于激光所提供的相干光和由利思及阿帕特内克斯改进了的全息术,形成了一个新的学科领域光学信息处理。光纤通信就是依据这方面理论的重要成就,它为信息传输和处理提供了崭新的技术。,Laser from atomic nuclei, PRL 106, 162501(201
19、1),在现代光学,由强激光产生的非线性光学现象正为越来越多的人们所注意。激光光谱学,包括激光喇曼光谱学、高分辨率光谱和皮秒超短脉冲,以及可调谐激光技术的出现,已使传统的光谱学发生了很大的变化,成为深入研究物质微观结构、运动规律及能量转换机制的重要手段。它为凝聚态物理学、分子生物学和化学的动态过程的研究提供了前所未有的技术。,光学研究内容:几何光学、物理光学和量子光学 几何光学是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。 物理光学是从光的波动性出发来研究光在传播过
20、程中所发生的现象的学科,所以也称为波动光学。它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。,波动光学的基础就是经典电动力学的麦克斯韦方程组。波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。波动光学可以解释光在散射媒质和各向异性媒质中传播时现象,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。 量子光学是从光子的性质出发,来研究光与物质相互作用。它的基础主要是量子力学和量子电动力学。 应用光学 光学是由许多与物理学紧密联系的分支学科组成;由于它有广泛的应用,所以还有
21、一系列应用背景较强的分支学科也属于光学范围。例如,有关电磁辐射的物理量的测量的光度学、辐射度学;以正常平均人眼为接收器,来研究电磁辐射所引起的彩色视觉,及其心理物理量的测量的色度学;以及众多的技术光学:光学系统设计及光学仪器理论,光学制造和光学测试,干涉量度学、薄膜光学、纤维光学和集成光学等;还有与其他学科交叉的分支,如天文光学、海洋光学、遥感光学、大气光学、生理光学及兵器光学等。,原子分子研究的几个前沿课题:(1)高激发态结构 :高激发态原子广泛存在于星球内部,宇宙空间,地球大气,高温等离子体以及各种气体激光器内。航天,激光,受控核聚变,同位素分离等科技事业的发展,使得对高激发态的研究显得越
22、来越重要。高激发态的原子结构及其在外电中呈现的性质,成为原子分子物理学的一个重要研究内容,并在近年来取得了巨大的进展。 (2)原子分子碰撞:弹性散射;共振散射;非弹性散射;复合反映;超慢碰撞(相对运动速率比内部运动的特征速率小,碰撞时系统绝热演化,可研究与绝热运动相关的奇特现象和多电子关联)。原子分子与各种粒子(正负电子、离子等)碰撞过程的研究不仅有助于深入了解原子分子结构,揭示基本物理规律,而且能为许多相关学科和应用领域(如天体物理、等离子体物理、凝聚态物理、分子反应动力学及核聚变研究、X-射线激光研究等)提供研究方法和基本数据。 激光场中电子与原子的相互作用:以频率、极化方向和强度为特征的
23、光子的参与,使得碰撞过程更为复杂,对其进行深入地研究,能够揭示出许多新的物理现象与效应,加深对相关粒子间相互作用及动力学过程的理解。 原子的光电离和光激发:原子光电离与激发可以帮助我们更好地理解原子中电子的关联与极化,对新型激光器、X-射线激光的研制以及天体物理中不透明度的计算都有着重要贡献。,(3)原子分子的能壳分辨波函数:(4)团簇 :原子团簇的研究是目前原子与分子物理学发展的一个前沿课题,而低维体系特别是纳米体系的性质的研究是原子分子物理学与介观物理的交叉领域。纳米材料和分子器件展示出广泛的应用前景,对国民经济的发展将起重要的推动作用。 (5)精密测量:原子时钟的稳定性大于10-14;氢
24、1s2s频率测量精度已达到3x10-13;对电子反常磁矩的测量精度已达到4x10-8。(6)奇特原子分子:普通原子中的一个电子被其他带负电的粒子等代替,或是原子核中的一个质子被其他带正电的粒子等代替而组成的原子。所有奇特原子都是不稳定的。它们的寿命最长不超过形成奇特原子的基本粒子在真空中的固有寿命。该领域的研究可分两个阶段。第一阶段是找出化学结构影响奇特原子的形成和衰变的规律。第二阶段是根据观测奇特原子的形成和衰变来获取有关化学结构和化学反应动力学的新数据。 (7)强场效应:强电磁场强烈扰动原子自身的库仑场,且改变体系原有对称性并引进新的动力学对称性,使体系中出现原子库仑场和外界电磁场共同支配
25、下的新的结构和运动形式。(强磁场中的氢原子会出现由原子核外电场和外界磁场共同支配的从规律运动相混沌运动的转化-至今没解决)。,(8)X激光:随着激光器件的发展,飞秒(10-15秒=10-3皮秒)强激光的产生、超短强激光与物质的相互作用已成为当今研究的热点之一。强激光与物质(固体、分子、原子、团簇)作用过程中,等离子体的动力学特性,如温度、密度分布及其均匀性直接影响了X射线的发射特性、产生的X射线激光的增益高低及X射线的传输特性,因而利用X射线谱来获取等离子体的温度、密度等重要参数,有助于我们对激光与物质相互作用机制和过程的认识和理解。(9)单原子分子操纵和探测识别:量子态定向激发:量子跃迁的控
26、制;空间维度的控制:准二维、准一维、准零维系统;势场的控制:粒子量子运动的控制;边界条件的控制:粒子量子运动的控制;原子、分子的剪切和搬运;原子、分子的组装(人工原子:指利用特殊手段对电子约束,使其表现出与自然原子壳层结构类似的能级等特性)。(10)玻色-爱因斯坦凝聚和原子激射器: 把自由运动的电子囚禁在一个小的纳米颗粒内,或者在一根非常细的短金属线内,线的宽度只有几个纳米,会发生十分奇妙的事情。由于颗粒内的电子运动受到限制,电子动能或能量被量子化了。结果表现在当在金属颗粒的两端加上电压,电压合适时,金属颗粒导电;而电压不合适时金属颗粒不导电。使得人们想到是否可以发展用一个电子来控制的电子器件
27、,所谓单电子器件。单电子器件的尺寸很小,一旦实现,并把它们集成起来作成计算机芯片。计算机的容量和计算速度不知要提高多少倍。,激光冷却:光对原子有辐射压力作用,利用光压改变原子速度。人们发现:当原子在频率略低于原子跃迁能级差且相向传播的一对激光束中运动时,由于多普勒效应,原子倾向于吸收与原子运动方向相反的光子,而对与其相同方向的光子吸收几率较小,吸收后的光子将各向同性自发辐射。平均看来,两束激光净作用是产生一个与原子运动方向相反的阻尼作用,从而使原子的运动减缓(冷却)。 1985年,美国人和Steven Chu实现激光冷却原子得到24k的纳原子气体。他们进一步用三维激光束形成磁光阱将原子囚禁在一
28、个空间的小区域中加以冷却得到更低温的“光学粘胶”。后来发展了磁场和激光相结合的一系列冷却技术。获得1997年诺贝尔物理学奖。 最近,北京大学冷原子物理研究小组,搭建了研究玻色-爱因斯坦凝聚的实验平台,获得了铷原子玻色-爱因斯坦凝聚,其转变温度约为500nk (10-9k),光学研究的几个前沿:光学器件:半导体二极管激光器;可调谐燃料激光器(制备新原子、分子和离子态);准分子激光器(工作物质是惰性气体卤化物,能量储于电子激发态);自由电子激光器(相对论性电子在周期性偏转磁场中辐射从红外到紫外的高强度相干辐射);铷玻璃激光器(用于超强激光诱发核聚变)光学研究:(a)、激光光谱学(b)、量子光学:运
29、用微腔肠等技术控制原子的激发和光子的统计性质,产生新型相干态(各种压缩态、反聚束等非经典激光),研究原子与超强激光相互作用等非线性光学现象。(c)、腔肠量子电动力学:研究出于高激发态的原子与微腔的微波和毫米波辐射相互作用的动力学。通过微腔肠技术改变电磁真空状态,控制辐射过程与原子的衰变行为和寿命。(d)、飞秒激光光谱学:可用于追踪分子对振动、转动、非平衡、化学反应等过程。,(e)、强激光:种子脉冲-展宽-放大-压缩-展宽-压缩。这样功率可提高8个量级 激光核聚变:靠激光产生的高温、压缩、超强电场引发的加速和碰撞效应,达到核聚变条件。(f )、非线性光学:利用单晶材料和微结构材料,产生非线性光学
30、性质,实现对光的振幅、向位、频率、偏振的控制。(g)、光子晶体:光子晶体对光波形成介电常数,使光波在周期场中传播,导致光子产生能带结构。 光子禁带材料:从材料结构上看,光子晶体是一类在光学尺度上具有周期性介点结构的人工设计和制造的晶体。(h)、电磁场引起的透明(EIT):利用三能级原子与两束激光作用,其中耦合激光束抑制原子向高能级跃迁,使试验激光束无吸收透过原子介质,同时介质中的光速慢,产生很强的非线性效应。该技术可实现光能的储存,光信息在原子体系中的想干储存、转换和加工。(i)、太赫兹光: THz波(太赫兹波)或称为THz射线(太赫兹射线)是从上个世纪80年代中后期,才被正式命名的,在此以前
31、科学家们将统称为远红外射线。太赫兹波是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。 1THz1012Hz,太赫兹处于科学技术发展相对较好的微波毫米波和红外线光学之间,形成一个相对落后的“空白”。,目前,国际上对太赫兹辐射已达成如下共识,即太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。它之所以能够引起人们广泛的关注、有如此之多的应用,首先是因为物质的太赫兹光谱(包括透射谱和反射谱)包含着非常丰富的物理和化学信息,所以研究物质在该波段的光谱对于物质结
32、构的探索具有重要意义;其次是因为太赫兹脉冲光源与传统光源相比具有很多独特的性质。,太赫兹射线的特点:THz 脉冲的典型脉宽在皮秒量级,不但可以方便地进行时间分辩的研究,而且通过取样测量技术,能够有效地抑制远红外背景噪声的干扰。目前,脉冲THz 辐射通常只有较低的THz 射线平均功率,但是由于THz 脉冲有很高的峰值功率,并且采用相干探测技术获得的是THz 脉冲的实时功率而不是平均功率,因此有很高的信噪比。目前,在时域光谱系统中的信噪比可达105或更高。 THz 脉冲源通常只包含若干个周期的电磁振荡,单个脉冲的频带可以覆盖从GHz 直至几十THz 的范围,许多生物大分子的振动和转动能级,电介质、
33、半导体材料、超导材料、薄膜材料等的声子振动能级落在THz 波段范围。因此THz 时域光谱技术作为探测材料在THz 波段信息的一种有效的手段,非常适合于测量材料吸收光谱,可用于进行定性鉴别的工作。,THz 光子的能量低,只有几毫电子伏特,因此不容易破坏被检测物质。许多的非金属非极性材料对THz 射线的吸收较小,因此结合相应的技术,使得探测材料内部信息成为可能。例如,陶瓷,硬纸板,塑料制品,泡沫等对THz 电磁辐射是透明的,因此THz 技术可以作为x射线的非电离和相干的互补辐射源,用于机场、车站等地方的安全监测,比如探查隐藏的走私物品包括枪械、爆炸物、和毒品等,以及用于集成电路焊接情况的检测等。极
34、性物质对THz 电磁辐射的吸收比较强,特别是水,THz 光谱技术中应采取各种措施避免水分的影响,不过在THz 成像技术中,可以利用这一特性分辨生物组织的不同状态,比如动物组织中脂肪和肌肉的分布,诊断人体烧伤部位的损伤程度,及植物叶片组织的水分含量分布等。太赫兹成像技术与其他波段的成像技术相比,它所得到的探测图像的分辨率和景深都有明显的增加(超声、红外、X射线技术也能提高图像分辨率,但是毫米波技术却没有明显的提高)。另外太赫兹技术还有许多独特的特性,如在非均匀的物质中有较少的散射,能够探测和测量水汽含量等等。 太赫兹光谱技术不仅信噪比高,能够迅速地对样品组成的细微变化作出分析和鉴别,而且太赫兹光
35、谱技术是一种非接触测量技术,使它能够对半导体、电介质薄膜及体材料的物理信息进行快速准确的测量。鉴于THz射线的特点,必将给通信、雷达、天文、医学成像、生物化学物品鉴定、材料学、安全检查等领域带来深远的影响,进而改变人们的生产生活。,THz应用 :THz时域光谱技术目前已经开始商业化运作,世界范围内已经有多家企业开始生产商用THz时域光谱仪,主要是美国,欧洲和日本的厂家。THz时域光谱技术的基本原理是利用飞秒脉冲产生并探测时间分辨的THz电场,通过傅立叶变换获得被测物品的光谱信息,由于大分子的振动和转动能级大多在THz波段,而大分子,特别是生物和化学大分子是具有本身物性的物质集团,进而可以通过特
36、征频率对物质结构、物性进行分析和鉴定。一个比较重要的应用可以作为药品质量监管。THz成像技术 跟其他波段的成像技术一样,THz成像技术也是利用THz射线照射被测物,通过物品的透射或反射获得样品的信息,进而成像。THz成像技术可以分为脉冲和连续两种方式。前者具有THz时域光谱技术的特点。同时它可以对物质集团进行功能成像,获得物质内部的折射率分布。例如,如果样品是人的牙齿,那么牙齿的正常部分与损蛀部分将很容易的区分开,同时不必照射x射线,对人体没有附加伤害。,安全检查 利用安全检查应该说是现阶段最吸引人的THz技术,它的本质原理是THz成像,由于目前主要采用连续波THz源,而且又由于它要解决的是目
37、前最受人关注的反恐、缉毒等最让人关注的问题,所以单列出来。目前英国发展的THz安检设备已经进入试用阶段。由于THz射线的穿透性和对金属材料的强反射特性,并且THz的高频率是的成像的分辨率更高,所以可以很容易看到隐藏在衣物、鞋内的刀具、枪械等物品。同时如果结合THz的物质鉴别特性,能够区分你身上是否携带炸药或毒品。首都师范大学THz实验室已经建立了常见的炸药和毒品的数据谱库,可以设想再过几年,可以真正在机场见到真正的THz安检的设备。另外,世界范围内引起社会动荡的自杀式炸弹恐怖袭击,也可以利用THz安检设备进行防范。因为站岗的可以不再是士兵或保安人员,而是THz安检仪,人们不需要靠近可以分子就可
38、以对其进行检查。 THz雷达 实际上也是成像的一种。鉴于大气中水分对THz射线的强吸收作用,所以近距离雷达是THz射线的优势所在。一个非常让人向往的应用是穿墙雷达和探雷雷达,当然也可以用于抗震救灾中遇难者的搜救,目前还处于研发阶段。这是由于墙壁,木材等材料对THz透过,而人体包含大量水分,不透过THz,因此可以透过墙壁侦查到屋内的人员的分布和活动,将反恐怖反绑架起到深远的影响,同理也可以用于废墟下人体的寻找。而探雷雷达是由于地雷一般在地表或地表附近,而干燥的泥土可以透过THz射线,而地雷将会把THz射线反射回来,从而可以发现目标。,天文学 在宇宙中,大量的物质在发出THz电磁波。 炭(C)、水
39、(H2O)、一氧化碳(CO)、氮(N2)、氧(O2)等大量的分子可以在THz频段进行探测。而这些物质在应用THz技术以前一部分根本无法探测而另一部分只能在海拔很高或者月球表面才可以探测到。通信技术 THz用于通信可以获得10GB/s的无线传输速度,特别是卫星通信,由于在外太空,近似真空的状态下,不用考虑水分的影响,这比当前的超宽带技术快几百至一千多倍。这就使得THz通信可以以极高的带宽进行高保密卫星通信。虽然由于缺乏高效的THz发射天线和源,使其还无法在通信领域商业化,但这必将由新型的发射装置和发射源所解决 。 其他 此外,太赫兹在半导体材料、高温超导材料的性质研究等领域也有广泛的应用。研究该
40、频段不仅将推动理论研究工作的重大发展,而且对固态电子学和电路技术也将提出重大挑战。 目前,笼统的说THz技术的研究主要围绕三大部分内容展开,THz产生源、THz探测和应用研究。目前最大的困难还是没有高功率便携式连续可调的成本较低的THz发射源,另外也没有能够常温下直接探测太赫兹射线的被动式探测器。,实际上,早在一百年前,就有科学工作者涉及过这一波段。在1896年和1897年,Rubens和Nichols就涉及到这一波段,红外光谱到达9um(0.009mm)和20um(0.02mm),之后又有到达50um的记载。之后的近百年时间,远红外技术取得了许多成果,并且已经产业化。但是涉及太赫兹波段的研究
41、结果和数据非常少,主要是受到有效太赫兹产生源和灵敏探测器的限制,因此这一波段也被称为THz间隙。随着80年代一系列新技术、新材料的发展,特别是超快技术的发展,使得获得宽带稳定的脉冲THz源成为一种准常规技术,THz技术得以迅速发展,并在实际范围内掀起一股THz研究热潮。 2004年,美国政府将THz科技评为“改变未来世界的十大技术”之四,而日本于2005年1月8日更是将THz技术列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。我国政府在2005年11月专门召开了“香山科技会议”,邀请国内多位在THz研究领域有影响的院士专门讨论我国THz事业的发展方向,并制定了我国THz技术的发展规划。 目前国内已经有多家研究机构开展太赫兹领域的相关研究,其中首都师范大学,是入手较早,投入较大的一家,并且在毒品和炸药太赫兹光谱、成像和识别方面,利用太赫兹对非极性航天材料内部缺陷进行无损检测方面做出了许多开拓性的工作,同时由于太赫兹射线在安全检查方面的独特优势,首都师范大学太赫兹实验室正集中力量研发能够用于实景测试的安检原型设备。,