收藏 分享(赏)

2018版高考数学(浙江,文理通用)大一轮复习讲义(教师版Word文档):第九章 平面解析几何9.2 Word版含解析.docx

上传人:weiwoduzun 文档编号:3973104 上传时间:2018-12-02 格式:DOCX 页数:16 大小:612.75KB
下载 相关 举报
2018版高考数学(浙江,文理通用)大一轮复习讲义(教师版Word文档):第九章 平面解析几何9.2 Word版含解析.docx_第1页
第1页 / 共16页
2018版高考数学(浙江,文理通用)大一轮复习讲义(教师版Word文档):第九章 平面解析几何9.2 Word版含解析.docx_第2页
第2页 / 共16页
2018版高考数学(浙江,文理通用)大一轮复习讲义(教师版Word文档):第九章 平面解析几何9.2 Word版含解析.docx_第3页
第3页 / 共16页
2018版高考数学(浙江,文理通用)大一轮复习讲义(教师版Word文档):第九章 平面解析几何9.2 Word版含解析.docx_第4页
第4页 / 共16页
2018版高考数学(浙江,文理通用)大一轮复习讲义(教师版Word文档):第九章 平面解析几何9.2 Word版含解析.docx_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、1两条直线的位置关系(1)两条直线平行与垂直两条直线平行:()对于两条不重合的直线 l1、l 2,若其斜率分别为 k1、k 2,则有 l1l 2k 1k 2.()当直线 l1、 l2 不重合且斜率都不存在时,l 1l 2.两条直线垂直:()如果两条直线 l1、l 2 的斜率存在,设为 k1、k 2,则有 l1l 2k 1k21.()当其中一条直线的斜率不存在,而另一条的斜率为 0 时,l 1l 2.(2)两条直线的交点直线 l1:A 1xB 1yC 10,l 2:A 2xB 2yC 20,则 l1 与 l2 的交点坐标就是方程组Error!的解2几种距离(1)两点 P1(x1, y1),P 2

2、(x2,y 2)之间的距离|P1P2| .(x2 x1)2 (y2 y1)2(2)点 P0(x0,y 0)到直线 l:AxBy C0 的距离d .|Ax0 By0 C|A2 B2(3)两条平行线 AxByC 10 与 AxByC 20( 其中 C1C 2)间的距离 d .|C1 C2|A2 B2【知识拓展】1一般地,与直线 AxBy C0 平行的直线方程可设为 AxBym 0(mC);与之垂直的直线方程可设为 BxAy n0.2过直线 l1:A 1xB 1yC 10 与 l2:A 2xB 2yC 20 的交点的直线系方程为A1x B1yC 1(A 2xB 2yC 2)0( R ),但不包括 l

3、2.3点到直线与两平行线间的距离的使用条件:(1)求点到直线的距离时,应先化直线方程为一般式(2)求两平行线之间的距离时,应先将方程化为一般式且 x,y 的系数对应相等【思考辨析】判断下列结论是否正确(请在括号中打 “”或“”)(1)当直线 l1 和 l2 斜率都存在时,一定有 k1k 2l 1l 2.( )(2)如果两条直线 l1 与 l2 垂直,则它们的斜率之积一定等于1.( )(3)已知直线 l1:A 1xB 1yC 10,l 2:A 2xB 2yC 20(A 1、B 1、C 1、A 2、B 2、C 2 为常数),若直线 l1l 2,则 A1A2B 1B20.( )(4)点 P(x0,y

4、 0)到直线 ykx b 的距离为 .( )|kx0 b|1 k2(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离( )(6)若点 A,B 关于直线 l:y kxb( k0)对称,则直线 AB 的斜率等于 ,且线段 AB 的中1k点在直线 l 上( )1(2016天津模拟)过点(1,0)且与直线 x2y 20 平行的直线方程是 ( )Ax2y10 Bx2y10C2x y20 Dx2y10答案 A解析 直线 x2y 20 可化为 y x1,12所以过点(1,0)且与直线 x2y20 平行的直线方程可设为 y xb,12将点(1,0)代入得 b .12所以所求直线方程为 x2y 10.

5、2(教材改编)已知点( a,2)(a0)到直线 l:xy30 的距离为 1,则 a 等于( )A. B22 2C. 1 D. 12 2答案 C解析 依题意得 1.|a 2 3|1 1解得 a1 或 a1 .a0,a1 .2 2 23已知直线 l 过圆 x2( y3) 24 的圆心,且与直线 xy10 垂直,则 l 的方程是( )Axy20 Bxy20Cx y30 Dxy30答案 D解析 圆 x2(y3) 24 的圆心为点(0,3) ,又因为直线 l 与直线 xy10 垂直,所以直线 l 的斜率 k1.由点斜式得直线 l:y 3x0,化简得 xy30.4(2017绍兴柯桥区质检)设直线 l1:(

6、 a1)x3y 20,直线 l2:x2y10,若 l1l 2,则 a_,若 l1l 2,则 a_.答案 712解析 若 l1l 2,则 a1 ,a ,32 12若 l1l 2,则(a1)60,a7.题型一 两条直线的平行与垂直例 1 (1)(2016杭州质检二)设不同直线 l1:2xmy1 0,l 2:(m 1)xy10.则“m2”是“l 1l 2”的( )A充分而不必要条件 B必要而不充分条件C充分必要条件 D既不充分也不必要条件答案 C解析 当 m2 时,代入两直线方程中,易知两直线平行,即充分性成立当 l1l 2 时,显然 m0,从而有 m 1,2m解得 m2 或 m1,但当 m1 时,

7、两直线重合,不合要求,故必要性成立,故选 C.(2)已知直线 l1:ax 2y 6 0 和直线 l2:x(a1)ya 210.试判断 l1 与 l2 是否平行;当 l1l 2 时,求 a 的值解 方法一 当 a1 时,l 1:x 2y60,l2:x0,l 1 不平行于 l2;当 a0 时,l 1:y 3,l2:xy10,l 1 不平行于 l2;当 a1 且 a0 时,两直线可化为 l1:y x3,a2l2:y x(a1),11 al1l 2Error! 解得 a1,综上可知,a1 时,l 1l 2.方法二 由 A1B2A 2B10,得 a(a1) 120,由 A1C2A 2C10,得 a(a2

8、1) 160,l 1l 2Error!Error! a1,故当 a1 时,l 1l 2.方法一 当 a1 时,l 1:x2y60,l 2:x 0,l1 与 l2 不垂直,故 a1 不成立;当 a0 时,l 1:y 3,l 2:xy 10,l 1 不垂直于 l2;当 a1 且 a0 时,l1:y x3,l 2:y x(a1) ,a2 11 a由( ) 1a .a2 11 a 23方法二 由 A1A2B 1B20,得 a2(a1)0a .23思维升华 (1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况同时还要注意 x,y 的系数不能同时为零这一隐含条件

9、(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论已知两直线 l1: xysin10 和 l2:2xsiny10,求 的值,使得:(1)l1l 2;(2)l1l 2.解 (1)方法一 当 sin0 时,直线 l1 的斜率不存在,l2 的斜率为 0,显然 l1 不平行于 l2.当 sin0 时,k 1 ,k 22sin.1sin要使 l1l 2,需 2sin,即 sin .1sin 22所以 k , kZ,此时两直线的斜率相等4故当 k , kZ 时,l 1l 2.4方法二 由 A1B2A 2B10,得 2sin210,所以 sin ,所以 k ,k Z.22 4又 B1

10、C2B 2C10,所以 1sin0,即 sin1.故当 k , kZ 时,l 1l 2.4(2)因为 A1A2B 1B20 是 l1 l2 的充要条件,所以 2sinsin0,即 sin0,所以 k ,k Z.故当 k,kZ 时,l 1l 2.题型二 两条直线的交点与距离问题例 2 (1)(2016长沙模拟)求经过两条直线 l1:xy40 和 l2:xy20 的交点,且与直线 2xy10 垂直的直线方程为_(2)直线 l 过点 P(1,2)且到点 A(2,3)和点 B(4,5)的距离相等,则直线 l 的方程为_答案 (1)x2y70 (2)x3y50 或 x1解析 (1)由Error!得Err

11、or!l 1 与 l2 的交点坐标为(1,3) 设与直线 2xy 10 垂直的直线方程为 x2yc0,则 123c0,c 7.所求直线方程为 x2y 70.(2)方法一 当直线 l 的斜率存在时,设直线 l 的方程为y2k(x1),即 kxyk 20.由题意知 ,|2k 3 k 2|k2 1 | 4k 5 k 2|k2 1即|3 k1| |3k 3|,k .13直线 l 的方程为 y2 (x1) ,13即 x3y50.当直线 l 的斜率不存在时,直线 l 的方程为 x1,也符合题意故所求直线 l 的方程为 x3y50 或 x1.方法二 当 ABl 时,有 kk AB ,13直线 l 的方程为

12、y2 (x1) ,13即 x3y50.当 l 过 AB 的中点时, AB 的中点为( 1,4)直线 l 的方程为 x1.故所求直线 l 的方程为 x3y50 或 x1.思维升华 (1)求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程(2)利用距离公式应注意:点 P(x0,y 0)到直线 xa 的距离 d|x 0a|,到直线 yb 的距离d|y 0b| ;两平行线间的距离公式要把两直线方程中 x,y 的系数化为相等(1)如图,设一直线过点( 1,1),它被两平行直线l1:x2y10,l 2:x 2y30 所截的线段的中点在直线 l

13、3:xy10 上,求其方程解 与 l1、l 2 平行且距离相等的直线方程为 x2y20.设所求直线方程为(x2y2)(xy1)0,即(1)x(2 )y2 0.又直线过( 1,1),(1)(1) (2 )120.解得 . 所求直线方程为 2x7y50.13(2)(2016济南模拟)若动点 P1(x1,y 1),P 2(x2,y 2)分别在直线l1:xy50,l 2:x y150 上移动,则 P1P2 的中点 P 到原点的距离的最小值是( )A. B5 C. D15522 2 152 2 2答案 B解析 设 P1P2 的中点为 P(x,y),则 x ,y .x1 x22 y1 y22x 1y 15

14、0,x 2y 2150.(x 1 x2)(y 1y 2)20,即 xy10.yx10,P(x ,x 10) ,P 到原点的距离 d x2 (x 10)2 5 .2(x 5)2 50 50 2题型三 对称问题命题点 1 点关于点中心对称例 3 (2016苏州模拟)过点 P(0,1)作直线 l,使它被直线 l1:2xy80 和l2:x3y100 截得的线段被点 P 平分,则直线 l 的方程为_答案 x4y40解析 设 l1 与 l 的交点为 A(a,82a) ,则由题意知,点 A 关于点 P 的对称点 B(a,2a6)在l2 上,代入 l2 的方程得a3(2a6) 100,解得 a4,即点 A(4

15、,0)在直线 l 上,所以直线l 的方程为 x 4y40.命题点 2 点关于直线对称例 4 如图,已知 A(4,0),B(0,4),从点 P(2,0)射出的光线经直线 AB 反射后再射到直线 OB 上,最后经直线 OB 反射后又回到 P 点,则光线所经过的路程是( )A3 B6C2 D23 10 5答案 C解析 直线 AB 的方程为 xy 4,点 P(2,0)关于直线 AB 的对称点为 D(4,2),关于 y 轴的对称点为 C(2,0)则光线经过的路程为 |CD| 2 .62 22 10命题点 3 直线关于直线的对称问题例 5 (2016泰安模拟)已知直线 l:2x3y10,求直线 m:3x2

16、y60 关于直线 l 的对称直线 m的方程解 在直线 m 上任取一点,如 M(2,0),则 M(2,0)关于直线 l 的对称点 M必在直线 m上设对称点 M(a,b) ,则Error!解得Error!M .(613,3013)设直线 m 与直线 l 的交点为 N,则由Error!得 N(4,3)又m经过点 N(4,3)由两点式得直线 m的方程为 9x46y1020.思维升华 解决对称问题的方法(1)中心对称点 P(x,y)关于 Q(a,b)的对称点 P( x,y ) 满足Error!直线关于点的对称可转化为点关于点的对称问题来解决(2)轴对称点 A(a,b)关于直线 AxByC0(B0)的对称

17、点 A (m,n),则有Error!直线关于直线的对称可转化为点关于直线的对称问题来解决已知直线 l:3x y30,求:(1)点 P(4,5)关于 l 的对称点;(2)直线 xy20 关于直线 l 对称的直线方程;(3)直线 l 关于(1,2)的对称直线解 设 P(x,y)关于直线 l:3 xy30 的对称点为 P(x,y) ,k PP kl1 ,即 31.y yx x又 PP的中点在直线 3xy 30 上,3 30.x x2 y y2由得Error!(1)把 x4,y5 代入得 x2,y 7,P(4,5) 关于直线 l 的对称点 P的坐标为(2,7)(2)用分别代换 xy20 中的 x,y

18、,得关于 l 的对称直线方程为 2 0, 4x 3y 95 3x 4y 35化简得 7xy220.(3)在直线 l:3x y 30 上取点 M(0,3)关于(1,2)的对称点 M(x,y) , 1,x 2, 2,y 1,M (2,1)x 02 y 32l 关于(1,2)的对称直线平行于 l,k3,对称直线方程为 y13(x2),即 3xy50.22妙用直线系求直线方程一、平行直线系由于两直线平行,它们的斜率相等或它们的斜率都不存在,因此两直线平行时,它们的一次项系数与常数项有必然的联系典例 1 求与直线 3x4y 10 平行且过点(1,2)的直线 l 的方程思想方法指导 因为所求直线与 3x4

19、y10 平行,因此,可设该直线方程为3x4yc0(c 1)规范解答解 依题意,设所求直线方程为 3x4yc 0( c1) ,又因为直线过点(1,2),所以 3142c0,解得 c11.因此,所求直线方程为 3x4y110.二、垂直直线系由于直线 A1x B1yC 10 与 A2xB 2yC 20 垂直的充要条件为 A1A2B 1B20.因此,当两直线垂直时,它们的一次项系数有必要的关系可以考虑用直线系方程求解典例 2 求经过 A(2,1),且与直线 2xy100 垂直的直线 l 的方程思想方法指导 依据两直线垂直的特征设出方程,再由待定系数法求解规范解答解 因为所求直线与直线 2xy100 垂

20、直,所以设该直线方程为 x2yC 10,又直线过点(2,1),所以有 221C 10,解得 C10,即所求直线方程为 x2y0.三、过直线交点的直线系典例 3 求经过两直线 l1:x 2y40 和 l2:x y20 的交点 P,且与直线l3:3x4y50 垂直的直线 l 的方程思想方法指导 可分别求出直线 l1 与 l2 的交点及直线 l 的斜率 k,直接写出方程;也可以利用过交点的直线系方程设直线方程,再用待定系数法求解规范解答解 方法一 解方程组Error!得 P(0,2)因为 l3 的斜率为 ,且 ll 3,34所以直线 l 的斜率为 ,43由斜截式可知 l 的方程为 y x2,43即

21、4x3y60.方法二 设直线 l 的方程为 x2y4(xy2)0,即(1)x(2)y 42 0.又ll 3,3(1)(4)( 2) 0,解得 11.直线 l 的方程为 4x3y60.1设 aR,则“a1”是“ 直线 l1:ax2y10 与直线 l2:x(a1) y40 平行”的 ( )A充分不必要条件 B必要不充分条件C充分必要条件 D既不充分也不必要条件答案 A解析 (1)充分性:当 a1 时,直线 l1:x2y10 与直线 l2:x 2y40 平行;(2)必要性:当直线 l1:ax 2y 10 与直线 l2:x(a1)y40 平行时有 a2 或 1.所以“a1”是“直线 l1:ax2y10

22、 与直线 l2:x (a1)y 40 平行”的充分不必要条件,故选 A.2(2016台州模拟)已知两条直线 l1:xy10,l 2:3xay20 且 l1l 2,则 a 等于( )A B. C 3D313 13答案 C解析 由 l1l 2,可得 131a0,a3.3(2016山东省实验中学质检) 从点(2,3)射出的光线沿与向量 a(8,4)平行的直线射到 y 轴上,则反射光线所在的直线方程为( )Ax2y40 B2xy10Cx 6y160 D6xy80答案 A解析 由直线与向量 a(8,4)平行知:过点(2,3)的直线的斜率 k ,所以直线的方程为12y3 (x2) ,其与 y 轴的交点坐标

23、为(0,2),又点(2,3) 关于 y 轴的对称点为(2,3),所以反12射光线过点(2,3)与(0,2),由两点式知 A 正确4(2016兰州模拟)一只虫子从点 O(0,0)出发,先爬行到直线 l:xy10 上的 P 点,再从P 点出发爬行到点 A(1,1),则虫子爬行的最短路程是 ( )A. B2C 3D42答案 B解析 点 O(0,0)关于直线 xy10 的对称点为 O(1,1) ,则虫子爬行的最短路程为|OA| 2.(1 1)2 (1 1)2故选 B.5(2016绵阳模拟)若 P,Q 分别为直线 3x4y120 与 6x8y50 上任意一点,则|PQ|的最小值为( )A. B. C.

24、D.95 185 2910 295答案 C解析 因为 ,所以两直线平行,36 48 125由题意可知|PQ|的最小值为这两条平行直线间的距离,即 ,| 24 5|62 82 2910所以|PQ|的最小值为 ,故选 C.29106(2016厦门模拟)将一张坐标纸折叠一次,使得点 (0,2)与点(4,0)重合,点(7,3) 与点(m,n) 重合,则 mn 等于( )A. B. C. D.345 365 283 323答案 A解析 由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线 y2x3,它也是点(7,3)与点(m,n)连线的中垂线,于是Error!解得Error!故 mn

25、,故选 A.3457(2016舟山训练)已知两直线 l1:axby40 和 l2:(a1)xyb0,若 l1l 2,且坐标原点到这两条直线的距离相等,则 ab_.答案 0 或83解析 由题意得Error!解得Error! 或Error!经检验,两种情况均符合题意,ab 的值为 0 或 .838已知直线 l1:ax y10,直线 l2:x y30,若直线 l1 的倾斜角为 ,则4a_;若 l1l 2,则 a_;若 l1l 2,则两平行直线间的距离为_答案 1 1 2 2解析 若直线 l1 的倾斜角为 ,则aktan 1,故 a1;若 l1l 2,则 a11(1)4 40,故 a1;若 l1l 2

26、,则 a1,l 1:x y10,两平行直线间的距离 d 2|1 ( 3)|1 1.29点 P(2,1)到直线 l:mxy30(mR )的最大距离是_答案 2 5解析 直线 l 经过定点 Q(0, 3),如图所示,由图知,当 PQ l 时,点 P(2,1)到直线 l 的距离取得最大值|PQ|2 ,(2 0)2 (1 3)2 5所以点 P(2,1)到直线 l 的最大距离为 2 .510(2016重庆模拟)在平面直角坐标系内,到点 A(1,2),B(1,5) ,C (3,6),D(7,1)的距离之和最小的点的坐标是_答案 (2,4)解析 如图,设平面直角坐标系中任一点 P,P 到点 A(1,2),B

27、(1,5),C(3,6),D(7 ,1)的距离之和为|PA| PB|PC| PD|PB|PD| PA|PC | BD| AC| QA|QB|QC| |QD |,故四边形 ABCD 对角线的交点 Q 即为所求距离之和最小的点A(1,2) ,B (1,5),C(3,6),D(7,1),直线 AC 的方程为 y22(x 1) ,直线 BD 的方程为 y5(x1) 由Error! 得 Q(2,4)11已知两条直线 l1:ax by40 和 l2:(a1)xy b0,求满足下列条件的 a,b 的值(1)l1l 2,且直线 l1 过点( 3,1) ;(2)l1l 2,且坐标原点到这两条直线的距离相等解 (

28、1)l 1l 2,a( a1)b0,又直线 l1 过点(3,1), 3ab40.故 a2,b2.(2)直线 l2 的斜率存在,l 1l 2,直线 l1 的斜率存在k 1k 2,即 1a.ab又坐标原点到这两条直线的距离相等,l 1,l 2 在 y 轴上的截距互为相反数,即 b.4b故 a2,b2 或 a ,b2.2312(2016北京朝阳区模拟)已知 ABC 的顶点 A(5,1),AB 边上的中线 CM 所在直线方程为2xy50,AC 边上的高 BH 所在直线方程为 x2y 50,求直线 BC 的方程解 依题意知:k AC2,A(5,1),l AC为 2xy110,联立 lAC、l CM得Er

29、ror!C(4,3)设 B(x0,y 0),AB 的中点 M 为 ( , ),x0 52 y0 12代入 2xy50,得 2x0y 010,Error! B( 1,3),k BC ,直线 BC 的方程为 y3 (x4),65 65即 6x5y90.*13.已知三条直线:l 1:2x ya0(a0) ;l 2:4x2 y10;l 3:xy 10,且 l1 与 l2间的距离是 .7510(1)求 a 的值;(2)能否找到一点 P,使 P 同时满足下列三个条件:点 P 在第一象限;点 P 到 l1 的距离是点 P 到 l2 的距离的 ;12点 P 到 l1 的距离与点 P 到 l3 的距离之比是 .

30、2 5若能,求点 P 的坐标;若不能,说明理由解 (1)直线 l2:2x y 0 ,所以两条平行线 l1 与 l2 间的距离为 d ,12 |a ( 12)|22 ( 1)2 7510所以 ,即 ,|a 12|5 7510 |a 12| 72又 a0,解得 a3.(2)假设存在点 P,设点 P(x0,y 0)若点 P 满足条件,则点 P 在与 l1,l2 平行的直线 l:2xy c 0 上,且 ,|c 3|5 12 |c 12|5即 c 或 ,132 116所以直线 l的方程为 2x0y 0 0 或 2x0y 0 0;132 116若点 P 满足条件,由点到直线的距离公式,有 ,|2x0 y0 3|5 25 |x0 y0 1|2即|2 x0y 03| |x 0y 01|,所以 x02y 040 或 3x02 0;由于点 P 在第一象限,所以 3x020 不可能联立方程 2x0y 0 0 和 x02y 040,132解得Error! (舍去);联立方程 2x0y 0 0 和 x02y 040,116解得Error!所以存在点 P 同时满足三个条件(19,3718)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 高考课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报