1、抛物线的简单几何性质,定义:在平面内,与一个定点F和到一条定直线l(l不经过点F)的距离相等的点的轨迹叫抛物线.,抛物线的定义及标准方程,y2=-2px (p0),x2=2py (p0),y2=2px (p0),x2=-2py (p0),由抛物线y2 =2px(p0),所以抛物线的范围为,如何研究抛物线y2 =2px(p0)的几何性质?,抛物线在y轴的右侧,当x的值增大时,y也增大,这说明抛物线向右上方和右下方无限延伸。,即点(x,-y) 也在抛物线上,故 抛物线y2 = 2px(p0)关于x轴对称.,则 (-y)2 = 2px,若点(x,y)在抛物线上, 即满足y2 = 2px,,定义:抛物
2、线与它的轴的交点叫做抛物线的顶点。,y2 = 2px (p0)中, 令y=0,则x=0.,即:抛物线y2 = 2px (p0)的顶点(0,0).,注:这与椭圆有四个顶点,双曲线有两个顶点不同。,抛物线上的点与焦点的距离和它到准线的距离之比,叫做抛物线的离心率。,由定义知, 抛物线y2 = 2px (p0)的离心率为e=1.,下面请大家得出其余三种标准方程抛物线的几何性质。,归纳:抛物线的几何性质,y2 = 2px (p0),y2 = -2px (p0),x2 = 2py (p0),x2 = -2py (p0),x0 yR,x0 yR,y0 xR,y 0 xR,(0,0),x轴,y轴,1,补充(
3、1)通径:,通过焦点且垂直对称轴的直线, 与抛物线相交于两点,连接这 两点的线段叫做抛物线的通径。,|PF|=x0+p/2,F,P,通径的长度:2P,P越大,开口越开阔,(2)焦半径:,连接抛物线任意一点与焦点的线段叫做抛物线的焦半径。,焦半径公式:,(标准方程中2p的几何意义),利用抛物线的顶点、通径的两个端点可较准确画出反映抛物线基本特征的草图。,例1.已知抛物线关于x轴对称,它的顶点在坐标原点,并且过点M(2, ),求它的标准方程.,例2、探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯口圆的直径为60cm,灯深40cm,求抛物线的标准方程及焦点的位置。,x,y,O,
4、A,B,F,解:如图所示,在探照灯的轴截面所在平面建立直角坐标系,使反光镜的顶点与原点重合,x轴垂直于灯口直径。设抛物线的标准方程是: 由已知条件可得点A的坐标是(40,30),代入方程可得,所求的标准方程为 焦点坐标为,1、已知抛物线的顶点在原点,对称轴为x轴,焦点在直线3x-4y-12=0上,那么抛物线通径长是 .,2、顶点在原点,对称轴为y轴且过(4,1)的抛物线方程是 .,解:由已知可设抛物线的方程为x2=2py,将点(4,1)代入,得p=8,故方程为x2=16y.,把握机会,3、已知点A(-2,3)与抛物线的焦点的距离是5,则 。,4,4、顶点在原点,对称轴是x轴,并且顶点与焦点的距离等于6的抛物线方程是_,抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但没有渐近线;,抛物线只有一条对称轴,没有对称中心;,抛物线的离心率是确定的,等于;,抛物线只有一个顶点,一个焦点,一条准线;,抛物线的通径为2P, 2p越大,抛物线的张口越大.,1、范围:,2、对称性:,3、顶点:,4、离心率:,5、通径:,谢谢,