收藏 分享(赏)

2018版高中数学 第三章 空间向量与立体几何 3.2.2 平面的法向量与平面的向量表示课件 新人教b版选修2-1.ppt

上传人:无敌 文档编号:373847 上传时间:2018-04-02 格式:PPT 页数:41 大小:1.47MB
下载 相关 举报
2018版高中数学 第三章 空间向量与立体几何 3.2.2 平面的法向量与平面的向量表示课件 新人教b版选修2-1.ppt_第1页
第1页 / 共41页
2018版高中数学 第三章 空间向量与立体几何 3.2.2 平面的法向量与平面的向量表示课件 新人教b版选修2-1.ppt_第2页
第2页 / 共41页
2018版高中数学 第三章 空间向量与立体几何 3.2.2 平面的法向量与平面的向量表示课件 新人教b版选修2-1.ppt_第3页
第3页 / 共41页
2018版高中数学 第三章 空间向量与立体几何 3.2.2 平面的法向量与平面的向量表示课件 新人教b版选修2-1.ppt_第4页
第4页 / 共41页
2018版高中数学 第三章 空间向量与立体几何 3.2.2 平面的法向量与平面的向量表示课件 新人教b版选修2-1.ppt_第5页
第5页 / 共41页
点击查看更多>>
资源描述

1、第三章 3.2 空间向量在立体几何中的应用,3.2.2平面的法向量与平面的向量表示,学习目标1.理解平面的法向量的概念,会求平面的法向量.2.会用平面的法向量证明平面与平面平行、垂直.3.理解并会应用三垂线定理及其逆定理,证明有关垂直问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一平面的法向量,思考,平面的法向量有何作用?是否唯一?,平面的法向量与空间一点可以确定一个平面,利用平面的法向量可以判断直线与平面、平面与平面的位置关系.平面的法向量不唯一,它们都是共线的.,答案,梳理平面的法向量已知平面,如果 ,则向量n叫做平面的法向量或说向量n与平面正交.,向量n的基线与平面垂直

2、,知识点二平面的向量表示,设A是空间任一点,n为空间内任一非零向量,则适合条件的点M的集合构成的图形是过空间内一点A并且与n垂直的平面.这个式子称为一个平面的向量表示式.,知识点三两平面平行或垂直的判定及三垂线定理,1.两平面平行或垂直的判定方法设n1,n2分别是平面,的法向量,则容易得到或与重合 ; .2.三垂线定理如果在平面内的一条直线与平面的一条斜线在这个平面内的射影垂直,则它也和这条斜线垂直.,n1n2,n1n20,n1n2,题型探究,类型一求平面的法向量,例1如图,在四棱锥PABCD中,底面ABCD为矩形,PA平面ABCD,E为PD的中点.ABAP1,AD ,试建立恰当的空间直角坐标

3、系,求平面ACE的一个法向量.,解答,因为PA平面ABCD,底面ABCD为矩形,所以AB,AD,AP两两垂直.,设n(x,y,z)为平面ACE的法向量,,引申探究若本例条件不变,试求直线PC的一个方向向量和平面PCD的一个法向量.,解答,设平面PCD的法向量为n(x,y,z).,利用待定系数法求平面法向量的步骤(1)设向量:设平面的法向量为n(x,y,z).,反思与感悟,(5)赋非零值:取其中一个为非零值(常取1).(6)得结论:得到平面的一个法向量.,跟踪训练1如图,在四棱锥PABCD中,底面ABCD是矩形.平面PAB平面ABCD,PAB是边长为1的正三角形,ABCD是菱形.ABC60,E是

4、PC的中点,F是AB的中点,试建立恰当的空间直角坐标系,求平面DEF的法向量.,解答,因为PAPB,F为AB的中点,所以PFAB,又因为平面PAB平面ABCD,平面PAB平面ABCDAB,PF平面PAB.所以PF平面ABCD,因为ABBC,ABC60,所以ABC是等边三角形,所以CFAB.以F为坐标原点,建立空间直角坐标系(如图所示).,设平面DEF的法向量为m(x,y,z).,类型二利用空间向量证明平行问题,例2已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中点,求证:(1)FC1平面ADE;,证明,设n1(x1,y1,z1)是平面ADE的法向量,,建立如图所示

5、空间直角坐标系Dxyz,则有D(0,0,0),A(2,0,0),C(0,2,0),C1(0,2,2),E(2,2,1),F(0,0,1),B1(2,2,2),,令z12,则y11,所以n1(0,1,2).,又因为FC1平面ADE,所以FC1平面ADE.,令z22,得y21,所以n2(0,1,2),因为n1n2,所以平面ADE平面B1C1F.,(2)平面ADE平面B1C1F.,证明,反思与感悟,利用向量证明平行问题,可以先建立空间直角坐标系,求出直线的方向向量和平面的法向量,然后根据向量之间的关系证明平行问题.,跟踪训练2如图,在四棱锥P-ABCD中,PA平面ABCD,PB与底面所成的角为45,

6、底面ABCD为直角梯形,ABCBAD90,PABC AD1,问在棱PD上是否存在一点E,使CE平面PAB?若存在,求出E点的位置;若不存在,请说明理由.,解答,分别以AB,AD,AP为x轴,y轴,z轴建立空间直角坐标系,P(0,0,1),C(1,1,0),D(0,2,0),,存在E点,当点E为PD中点时,CE平面PAB.,类型三三垂线定理及应用,例3在正方体ABCDA1B1C1D1中,O为底面ABCD的中心,E为CC1的中点.求证:EO平面A1DB.,证明,方法一取F、G分别为DD1和AD的中点,连接EF、FG、GO、AC.由正方体的性质知FG为EO在平面ADD1A1内的射影.又A1DFG,A

7、1DEO(三垂线定理).又ACBD,CO为EO在平面ABCD内的射影,EOBD(三垂线定理).又A1DBDD,EO平面A1DB.方法二连接AC、A1O、A1E,A1C1,设正方体棱长为2,由方法一已证BDOE,,反思与感悟,利用三垂线定理及其逆定理证明线线垂直是一种常用方法,其基本环节有三个.,跟踪训练3如图,已知PO平面ABC,且O为ABC的垂心,求证:ABPC.,证明,PO平面ABC,O为垂足,PC在平面ABC内的射影为OC.又O为ABC的垂心,ABOC.据三垂线定理得ABPC.,当堂训练,1.若直线l,且l的方向向量为(2,m,1),平面的法向量为 ,则m为A.4 B.6 C.8 D.8

8、,答案,解析,2,3,4,5,1,2.若两个不同平面,的法向量分别为u(1,2,1),v(3,6,3),则A. B.C.,相交但不垂直 D.以上均不正确,v3u,vu.故.,2,3,4,5,1,答案,解析,2,3,4,5,1,3.若a(1,2,3)是平面的一个法向量,则下列向量中能作为平面的法向量的是A.(0,1,2) B.(3,6,9)C.(1,2,3) D.(3,6,8),向量(1,2,3)与向量(3,6,9)共线.,答案,解析,2,3,4,5,1,答案,解析,2,3,4,5,1,5.在正方体ABCD-A1B1C1D1中,平面ACD1的一个法向量为_.,(1,1,1) (答案,不唯一),答案,解析,2,3,4,5,1,不妨设正方体的棱长为1,建立空间直角坐标系(如图),则各点坐标为A(1,0,0),C(0,1,0),D1(0,0,1),设平面ACD1的一个法向量为a(x,y,z),,规律与方法,1.用法向量来解决平面与平面的关系问题,思路清楚,不必考虑图形的位置关系,只需通过向量运算,就可得到要证明的结果.2.利用三垂线定理证明线线垂直,需先找到平面的一条垂线,有了垂线,才能作出斜线的射影,同时要注意定理中的“平面内的一条直线”这一条件,忽视这一条件,就会产生错误结果.,本课结束,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报