1、第二节,空间直角坐标系 与 向量的坐标表示,一、空间直角坐标系,由三条互相垂直的数轴按右手规则,组成一个空间直角坐标系.,坐标原点,坐标轴,x轴(横轴),y轴(纵轴),z 轴(竖轴),过空间一定点 O ,坐标面,卦限(八个),1. 空间直角坐标系的基本概念,zOx面,在直角坐标系下,向径,坐标轴上的点 P, Q , R ;,坐标面上的点 A , B , C,点 M,特殊点的坐标 :,有序数组,(称为点 M 的坐标),原点 O(0,0,0) ;,坐标轴 :,坐标面 :,2. 向量的坐标表示,在空间直角坐标系下,设点 M,则,沿三个坐标轴方向的分向量,的坐标为,记,四、利用坐标作向量的线性运算,则
2、,平行向量对应坐标成比例:,例2.,求解以向量为未知元的线性方程组,解:,2 3 , 得,代入得,例3. 已知两点,在AB所在直线上求一点 M , 使,解: 设 M 的坐标为,如图所示,及实数,得,即,说明: 由,得定比分点公式:,点 M 为 AB 的中点 ,于是得,中点公式:,五、向量的模、方向角、投影,1. 向量的模与两点间的距离公式,则有,由勾股定理得,因,得两点间的距离公式:,对两点,与,例4. 求证以,证:,即,为等腰三角形 .,的三角形是等腰三角形 .,为顶点,例5. 在 z 轴上求与两点,等距,解: 设该点为,解得,故所求点为,及,思考:,(1) 如何求在 xOy 面上与A ,
3、B 等距离之点的轨迹方程?,(2) 如何求在空间与A , B 等距离之点的轨迹方程 ?,离的点 .,提示:,(1) 设动点为,利用,得,(2) 设动点为,利用,得,且,例6. 已知两点,解:,2. 方向角与方向余弦,设有两非零向量,任取空间一点 O ,称 =AOB (0 ) 为向量,的夹角.,类似可定义向量与轴, 轴与轴的夹角 .,与三坐标轴的夹角 , , ,为其方向角.,方向角的余弦称为其方向余弦.,方向余弦的性质:,例7. 已知两点,和,的模 、方向余弦和方向角 .,解:,计算向量,例8. 设点 A 位于第一卦限,解: 已知,角依次为,求点 A 的坐标 .,则,因点 A 在第一卦限 ,故,于是,故点 A 的坐标为,向径 OA 与 x 轴 y 轴的夹,第二节,3. 向量在轴上的投影,第二节,例如,在坐标轴上的投影分别为, 即,投影的性质,(为实数),例9.,第二节,设立方体的一条对角线为OM, 一条棱为 OA, 且,解: 如图所示, 记 MOA = ,作业 P12 3 , 5, 13, 14,15, 18, 19,备用题,解: 因,1. 设,求向量,在 x 轴上的投影及在 y 轴上的分,向量.,在 y 轴上的分向量为,故在 x 轴上的投影为,2. 设,求以向量,行四边形的对角线的长度 .,该平行四边形的对角线的长度各为,对角线的长为,解:,为边的平,