收藏 分享(赏)

第2章 微分方程模型.ppt

上传人:dzzj200808 文档编号:3330446 上传时间:2018-10-14 格式:PPT 页数:79 大小:1.96MB
下载 相关 举报
第2章 微分方程模型.ppt_第1页
第1页 / 共79页
第2章 微分方程模型.ppt_第2页
第2页 / 共79页
第2章 微分方程模型.ppt_第3页
第3页 / 共79页
第2章 微分方程模型.ppt_第4页
第4页 / 共79页
第2章 微分方程模型.ppt_第5页
第5页 / 共79页
点击查看更多>>
资源描述

1、第2章 微分方程模型,动态模型,描述对象特征随时间(空间)的演变过程,分析对象特征的变化规律,预报对象特征的未来性态,研究控制对象特征的手段,根据函数及其变化率之间的关系确定函数,微分方程建模,根据建模目的和问题分析作出简化假设,按照内在规律或用类比法建立微分方程,1. 传染病模型,问题,描述传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮到来的时刻,预防传染病蔓延的手段,按照传播过程的一般规律,用机理分析方法建立模型,已感染人数 (病人) i(t),每个病人每天有效接触(足以使人致病)人数为,模型1,假设,若有效接触的是病人,则不能使病人数增加,建模,?,模型2,区分已感染者(病人

2、)和未感染者(健康人),假设,1)总人数N不变,病人和健康 人的 比例分别为,2)每个病人每天有效接触人数为, 且使接触的健康人致病,建模, 日 接触率,SI 模型,模型2,tm传染病高潮到来时刻, (日接触率) tm,病人可以治愈!,?,t=tm, di/dt 最大,模型3,传染病无免疫性病人治愈成为健康人,健康人可再次被感染,增加假设,SIS 模型,3)病人每天治愈的比例为, 日治愈率,建模, 日接触率,1/ 感染期, 一个感染期内每个病人的有效接触人数,称为接触数。,模型3,接触数 =1 阈值,感染期内有效接触感染的健康者人数不超过病人数,模型2(SI模型)如何看作模型3(SIS模型)的

3、特例,模型4,传染病有免疫性病人治愈后即移出感染系统,称移出者,SIR模型,假设,1)总人数N不变,病人、健康人和移出者的比例分别为,2)病人的日接触率 , 日治愈率, 接触数 = / ,建模,需建立 的两个方程,模型4,SIR模型,模型4,SIR模型,相轨线 的定义域,在D内作相轨线 的图形,进行分析,模型4,SIR模型,相轨线 及其分析,s(t)单调减相轨线的方向,P1: s01/ i(t)先升后降至0,P2: s01/ i(t)单调降至0,1/ 阈值,模型4,SIR模型,预防传染病蔓延的手段, (日接触率) 卫生水平,(日治愈率) 医疗水平,传染病不蔓延的条件s01/, 的估计,降低 s

4、0,提高 r0,提高阈值 1/,模型4,SIR模型,被传染人数的估计,记被传染人数比例, 小, s0 1,提高阈值1/ 降低被传染人数比例 x,s0 - 1/ = ,Discussions,2. 经济增长模型,增加生产 发展经济,增加投资,增加劳动力,提高技术,建立产值与资金、劳动力之间的关系,研究资金与劳动力的最佳分配,使投资效益最大,调节资金与劳动力的增长率,使经济(生产率)增长,1). 道格拉斯(Douglas)生产函数,产值 Q(t),F为待定函数,资金 K(t),劳动力 L(t),技术 f(t),= f0,模型假设,静态模型,每个劳动力的产值,每个劳动力的投资,z 随着 y 的增加而

5、增长,但增长速度递减,1). 道格拉斯(Douglas)生产函数,含义?,Douglas生产函数,QK 单位资金创造的产值,QL 单位劳动力创造的产值, 资金在产值中的份额,1- 劳动力在产值中的份额,更一般的道格拉斯(Douglas)生产函数,1). Douglas生产函数,w , r , K/L ,求资金与劳动力的分配比例K/L(每个劳动力占有的资金) ,使效益S最大,资金和劳动力创造的效益,资金来自贷款,利率 r,劳动力付工资 w,2)资金与劳动力的最佳分配(静态模型),3) 经济(生产率)增长的条件 (动态模型),要使 Q(t) 或 Z(t)=Q(t)/L(t) 增长, K(t), L

6、(t)应满足的条件,模型假设,投资增长率与产值成正比 (用一定比例扩大再生产),劳动力相对增长率为常数,Bernoulli方程,产值Q(t)增长,3) 经济增长的条件,劳动力相对增长率小于初始投资相对增长率,每个劳动力的产值 Z(t)=Q(t)/L(t)增长,3) 经济增长的条件,Discussions,3. 正规战与游击战,战争分类:正规战争,游击战争,混合战争,只考虑双方兵力多少和战斗力强弱,兵力因战斗及非战斗减员而减少,因增援而增加,战斗力与射击次数及命中率有关,建模思路和方法为用数学模型讨论社会领域的实际问题提供了可借鉴的示例,第一次世界大战Lanchester提出 预测战役结局的模型

7、,一般模型,每方战斗减员率取决于双方的兵力和战斗力,每方非战斗减员率与本方兵力成正比,甲乙双方的增援率为u(t), v(t),f, g 取决于战争类型,x(t) 甲方兵力,y(t) 乙方兵力,模型假设,模型,正规战争模型,甲方战斗减员率只取决于乙方的兵力和战斗力,双方均以正规部队作战,忽略非战斗减员,假设没有增援,f(x, y)=ay, a 乙方每个士兵的杀伤率,a=ry py, ry 射击率, py 命中率,正规战争模型,为判断战争的结局,不求x(t), y(t)而在相平面上讨论 x 与 y 的关系,平方律 模型,游击战争模型,双方都用游击部队作战,甲方战斗减员率还随着甲方兵力的增加而增加,

8、f(x, y)=cxy, c 乙方每个士兵的杀伤率,c = ry py ry射击率 py 命中率,游击战争模型,线性律 模型,混合战争模型,甲方为游击部队,乙方为正规部队,乙方必须10倍于甲方的兵力,设 x0=100, rx/ry=1/2, px=0.1, sx=1(km2), sry=1(m2),Discussions,4. 药物在体内的分布与排除,药物进入机体形成血药浓度(单位体积血液的药物量),血药浓度需保持在一定范围内给药方案设计,药物在体内吸收、分布和排除过程 药物动力学,建立房室模型药物动力学的基本步骤,房室机体的一部分,药物在一个房室内均匀分布(血药浓度为常数),在房室间按一定规

9、律转移,本节讨论二室模型中心室(心、肺、肾等)和周边室(四肢、肌肉等),模型假设,中心室(1)和周边室(2),容积不变,药物在房室间转移速率及向体外排除速率,与该室血药浓度成正比,药物从体外进入中心室,在二室间相互转移,从中心室排出体外,模型建立,线性常系数非齐次方程,对应齐次方程通解,模型建立,几种常见的给药方式,1.快速静脉注射,t=0 瞬时注射剂量D0的药物进入中心室,血药浓度立即为D0/V1,给药速率 f0(t) 和初始条件,2.恒速静脉滴注,t T, c1(t)和 c2(t)按指数规律趋于零,3.口服或肌肉注射,相当于药物( 剂量D0)先进入吸收室,吸收后进入中心室,吸收室药量x0(

10、t),参数估计,各种给药方式下的 c1(t), c2(t) 取决于参数k12, k21, k13, V1,V2,t=0快速静脉注射D0 ,在ti(i=1,2,n)测得c1(ti),由较大的 用最小二乘法定A,由较小的 用最小二乘法定B,参数估计,Discussions,5. 香烟过滤嘴的作用,过滤嘴的作用与它的材料和长度有什么关系,人体吸入的毒物量与哪些因素有关,其中哪些因素影响大,哪些因素影响小。,模型分析,分析吸烟时毒物进入人体的过程,建立吸烟过程的数学模型。,设想一个“机器人”在典型环境下吸烟,吸烟方式和外部环境认为是不变的。,问题,模型假设,定性分析,1)l1烟草长, l2过滤嘴长,

11、l = l1+ l2,毒物量M均匀分布,密度w0=M/l1,2)点燃处毒物随烟雾进入空气和沿香烟穿行的数量比是a:a, a+a=1,3)未点燃的烟草和过滤嘴对随烟雾穿行的毒物的(单位时间)吸收率分别是b和,4)烟雾沿香烟穿行速度是常数v,香烟燃烧速度是常数u, v u,Q 吸一支烟毒物进入人体总量,模型建立,t=0, x=0,点燃香烟,q(x,t) 毒物流量,w(x,t) 毒物密度,1) 求q(x,0)=q(x),t时刻,香烟燃至 x=ut,1) 求q(x,0)=q(x),2) 求q(l,t),3) 求w(ut,t),4) 计算 Q,结果分析,烟草为什么有作用?,1)Q与a,M成正比, aM是

12、毒物集中在x=l 处的吸入量,2) 过滤嘴因素,, l2 负指数作用,是毒物集中在x=l1 处的吸入量,3)(r) 烟草的吸收作用,b, l1 线性作用,带过滤嘴,不带过滤嘴,结果分析,4) 与另一支不带过滤嘴的香烟比较,w0, b, a, v, l 均相同,吸至 x=l1扔掉,提高 -b 与加长l2,效果相同,Discussions,6. 人口预测和控制,年龄分布对于人口预测的重要性,只考虑自然出生与死亡,不计迁移,人口发展方程,人口发展方程,一阶偏微分方程,人口发展方程,已知函数(人口调查),生育率(控制人口手段),生育率的分解,总和生育率,h生育模式,人口发展方程和生育率,总和生育率控制

13、生育的多少,生育模式控制生育的早晚和疏密,正反馈系统,滞后作用很大,人口指数,1)人口总数,2)平均年龄,3)平均寿命,t时刻出生的人,死亡率按 (r,t) 计算的平均存活时间,4)老龄化指数,控制生育率,控制 N(t)不过大,控制 (t)不过高,Discussions,为了保持自然资料的合理开发与利用,人类必须保持并控制生态平衡,甚至必须控制人类自身的增长。本节将建立几个简单的单种群增长模型,以简略分析一下这方面的问题。,种群的数量本应取离散值,但由于种群数量一般较大,为建立微分方程模型,可将种群数量看作连续变量,由此引起的误差将是十分微小的。, Malthus模型与Logistic模型,模

14、型1 马尔萨斯(Malthus)模型,马尔萨斯在分析人口出生与死亡情况的资料后发现,人口净增长率r基本上是一常数,(r=b-d,b为出生率,d为死亡率),即:,马尔萨斯模型的一个显著特点:种群数量翻一番所需的时间是固定的。,Malthus模型实际上只有在群体总数不太大时才合理,到总数增大时,生物群体的各成员之间由于有限的生存空间,有限的自然资源及食物等原因,就可能发生生存竞争等现象。,所以Malthus模型假设的人口净增长率不可能始终保持常数,它应当与人口数量有关。,假如人口数真能保持每34.6年增加一倍,那么人口数将以几何级数的方式增长。例如,到2510年,人口达21014个,即使海洋全部变

15、成陆地,每人也只有9.3平方英尺的活动范围,而到2670年,人口达361015个,只好一个人站在另一人的肩上排成二层了。 故马尔萨斯模型是不完善的。,模型2 Logistic模型,人口净增长率应当与人口数量有关,即: r=r(N),r(N)是未知函数,但根据实际背景,它无法用拟合方法来求 。,为了得出一个有实际意义的模型,我们不妨采用一下工程师原则。工程师们在建立实际问题的数学模型时,总是采用尽可能简单的方法。,r(N)最简单的形式是常数,此时得到的就是马尔萨斯模型。对马尔萨斯模型的最简单的改进就是引进一次项(竞争项),(3.9)式还有另一解释,由于空间和资源都是有限的,不可能供养无限增长的种

16、群个体,当种群数量过多时,由于人均资源占有率的下降及环境恶化、疾病增多等原因,出生率将降低而死亡率却会提高。设环境能供养的种群数量的上界为K(近似地将K看成常数),N表示当前的种群数量,K-N恰为环境还能供养的种群数量,(3.9)指出,种群增长率与两者的乘积成正比,正好符合统计规律,得到了实验结果的支持,这就是(3.9)也被称为统计筹算律的原因。,图3-5,对(3.9)分离变量:,两边积分并整理得:,令N(0)=N0,求得:,N(t)的图形请看图3.5,大量实验资料表明用Logistic模型来描述种群的增长,效果还是相当不错的。例如,高斯把5只草履虫放进一个盛有0.5cm3营养液的小试管,他发

17、现,开始时草履虫以每天230.9%的速率增长,此后增长速度不断减慢,到第五天达到最大量375个,实验数据与r=2.309,a=0.006157,N(0)=5的Logistic曲线:几乎完全吻合,见图3.6。,图3-6,Malthus模型和Logistic模型的总结,Malthus模型和Logistic模型均为对微分方程(3.7)所作的模拟近似方程。前一模型假设了种群增长率r为一常数,(r被称为该种群的内禀增长率)。后一模型则假设环境只能供养一定数量的种群,从而引入了一个竞争项。,用模拟近似法建立微分方程来研究实际问题时必须对求得的解进行检验,看其是否与实际情况相符或基本相符。相符性越好则模拟得

18、越好,否则就得找出不相符的主要原因,对模型进行修改。,Malthus模型与Logistic模型虽然都是为了研究种群数量的增长情况而建立的,但它们也可用来研究其他实际问题,只要这些实际问题的数学模型有相同的微分方程即可。,Discussions,3.3 为什么要用三级火箭来发射人造卫星,1、为什么不能用一级火箭发射人造卫星?,(1)卫星能在轨道上运动的最低速度,R为地球半径,约为6400公里,故引力:,构造数学模型,以说明为什么不能用一级火箭而必须用多级火箭来发射人造卫星?为什么一般都采用三级火箭系统?,(2)火箭推进力及速度的分析,假设:火箭重力及空气阻力均不计,(2)火箭推进力及速度的分析,

19、最终质量为mP + mS ,初始速度为0, 所以末速度:,根据目前的技术条件和燃料性能,u只能达到3公里/秒,即使发射空壳火箭,其末速度也不超过6.6公里/秒。 目前根本不可能用一级火箭发射人造卫星,火箭推进力在加速整个火箭时,其实际效益越来越低。如果将结构质量在燃料燃烧过程中不断减少,那么末速度能达到要求吗?,2、理想火箭模型,得到:,解得:,理想火箭与一级火箭最大的区别在于,当火箭燃料耗尽时,结构质量也逐渐抛尽,它的最终质量为mP,,所以最终速度为:,只要m0足够大,我们可以使卫星达到我们希望它具有的任意速度。,考虑到空气阻力和重力等因素,估计(按比例的粗略估计)发射卫星要使=10.5公里

20、/秒才行,则可推算出m0/ mp约为51,即发射一吨重的卫星大约需要50吨重的理想火箭,3、理想过程的实际逼近多级火箭卫星系统,记火箭级数为n,当第i级火箭的燃料烧尽时,第i+1级火箭立即自动点火,并抛弃已经无用的第i级火箭。用mi表示第i级火箭的质量,mP表示有效负载。,先作如下假设:,考虑二级火箭:,又由假设(ii),m2=kmP,m1=k(m2+mP),代入上式,仍设u=3公里/秒,且为了计算方便,近似取=0.1,则可得:,要使2=10.5公里/秒,则应使:,即k11.2,而:,类似地,可以推算出三级火箭:,在同样假设下:,要使3=10.5公里/秒,则(k+1)/(0.1k+1)3.21

21、,k3.25,而(m1+ m2+ m3+ mP)/ mP77。,是否三级火箭就是最省呢?最简单的方法就是对四级、五级等火箭进行讨论。,考虑N级火箭:,记n级火箭的总质量(包含有效负载mP)为m0 ,在相同的假设下可以计算出相应的m0/ mP的值,见表3-2,由于工艺的复杂性及每节火箭都需配备一个推进器,所以使用四级或四级以上火箭是不合算的,三级火箭提供了一个最好的方案。,当然若燃料的价钱很便宜而推进器的价钱很贵切且制作工艺非常复杂的话,也可选择二级火箭。,4、火箭结构的优化设计,3中已经能说过假设(ii)有点强加的味道;现去掉该假设,在各级火箭具有相同的粗糙假设下,来讨论火箭结构的最优设计。,应用(3.11)可求得末速度:,记,则,又,问题化为,在n一定的条件下,求使k1 k2kn最小,解条件极值问题:,或等价地求解无约束极值问题:,可以解出最优结构设计应满足:,火箭结构优化设计讨论中我们得到与假设(ii)相符的结果,这说明前面的讨论都是有效的!,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高等教育 > 大学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报