收藏 分享(赏)

带电粒子在复合场中的运动.ppt

上传人:weiwoduzun 文档编号:3298862 上传时间:2018-10-11 格式:PPT 页数:68 大小:1.77MB
下载 相关 举报
带电粒子在复合场中的运动.ppt_第1页
第1页 / 共68页
带电粒子在复合场中的运动.ppt_第2页
第2页 / 共68页
带电粒子在复合场中的运动.ppt_第3页
第3页 / 共68页
带电粒子在复合场中的运动.ppt_第4页
第4页 / 共68页
带电粒子在复合场中的运动.ppt_第5页
第5页 / 共68页
点击查看更多>>
资源描述

1、一、复合场复合场是指电场、 和重力场并存,或其中某两场并存,或分区域存在. 二、带电粒子在复合场中的运动分类1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于 状态或做 .,第4课时 带电粒子在复合场中的运动 考点自清,磁场,匀速直线运动,静止,2.匀速圆周运动当带电粒子所受的重力与电场力大小 ,方向 时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做 运动. 3.较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一条直线上,粒子做 变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.,相等,相反,匀速圆周,非匀,4.分阶段运动带电粒子可能

2、依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.,点拨 研究带电粒子在复合场中的运动时,首先要明确各种不同力的性质和特点;其次要正确地画出其运动轨迹,再选择恰当的规律求解.,三、电场磁场分区域应用实例 1.电视显像管电视显像管是应用电子束 (填“电偏转”或“磁偏转”)的原理来工作的,使电子束偏转的 (填“电场”或“磁场”)是由两对偏转线圈产生的.显像管工作时,由 发射电子束, 利用磁场来使电子束偏转,实现电视技术 中的 ,使整个荧光屏都在发光. 2.质谱仪(1)构造:如图1所示,由粒子源、 、和照相底片等构成.,磁偏转,磁场,阴极,扫描,加速电场

3、,偏转磁场,图1,(2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式 ,粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式 由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷.r = ,m= ,= .,四、电场磁场同区域并存应用实例1.速度选择器如图2所示,平行板中电场强度E的方向和磁感应强度B的方向互相 ,这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.带电粒子能够匀速沿直线通过速度选择器的条件是qE=qvB,即v= .,图2,垂直,2.磁流体发电机根据左手定则,如图3中的B板是发电机的正极.磁流体发电机两极板间的距离为d,等离子体速度

4、为v,磁场磁感应强度为B,则两极板间能达到的最大电势差U= .,dvB,图3,3.电磁流量计工作原理:如图4所示,圆形导管直径为d,用制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子),在洛伦兹力的作用下横向偏转,a、b间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a、b间的电势差就保持稳定,即qvB=qE=q ,所以v= ,因此液体流量Q=Sv= .,非磁性材料,图4,4.霍尔效应:在匀强磁场中放置一个矩形截面的载流导体,当 与电流方向垂直时,导体在与磁场、电流方向都垂直的方向上出现了,这个现象称为霍尔效应.所产生的电势差称为霍尔电势差,其原理如图5所示.名师

5、点拨 理解带电粒子在复合场中运动的这几个实例时,一定要从其共性qE=qvB出发.,磁场方向,电势差,图5,热点一 磁偏转与电偏转的区别,热点聚焦,特别提示(1)电偏转和磁偏转分别是利用电场和磁场对(运动)电荷产生电场力和洛伦兹力的作用,控制其运动方向和轨迹. (2)两类运动的受力情况和处理方法差别很大,要首先进行区别分析,再根据具体情况处理.,热点二 带电粒子在复合场中运动的分类 1.带电粒子在复合场中无约束情况下的运动(1)磁场力、重力并存若重力和洛伦兹力平衡,则带电体做匀速直线运动.若重力和洛伦兹力不平衡,则带电体将做复杂曲线运动,因F洛不做功,故机械能守恒,由此可求解问题.(2)电场力、

6、磁场力并存(不计重力的微观粒子)若电场力和洛伦兹力平衡,则带电体做匀速直线运动.,若电场力和洛伦兹力不平衡,则带电体做复杂曲线运动,因F洛不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存若三力平衡,一定做匀速直线运动.若重力与电场力平衡,一定做匀速圆周运动.若合力不为零且与速度方向不垂直,做复杂的曲线运动,因F洛不做功,可用能量守恒或动能定理求解问题. 2.带电粒子在复合场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和,圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,用动能定理、能量守恒定律

7、结合牛顿运动定律求出结果. 3.带电粒子在复合场中运动的临界值问题由于带电粒子在复合场中受力情况复杂、运动情况多变,往往出现临界问题,这时应以题目中的“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解.,特别提示带电粒子在复合场中运动的问题,往往综合性较强、物理过程复杂.在分析处理该部分的问题时,要充分挖掘题目的隐含信息,利用题目创设的情景,对粒子做好受力分析、运动过程分析,培养空间想象能力、分析综合能力、应用数学知识处理物理问题的能力.,热点三 带电粒子在复合场中运动问题分析 1.弄清复合场的组成,一般有磁场、电场的复合;磁场、重力场的复

8、合;磁场、电场、重力场三者的复合. 2.正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析. 3.确定带电粒子的运动状态,注意运动情况和受力情况的结合. 4.对于粒子连续通过几个不同情况场的问题,要分阶段进行处理.转折点的速度往往成为解题的突破口.,5.画出粒子运动轨迹,灵活选择不同的运动规律.(1)当带电粒子在复合场中做匀速直线运动时,根据受力平衡列方程求解.(2)当带电粒子在复合场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解.(3)当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解.(4)对于临界问题,注意挖掘隐含条件.,交流与思考:在解决复合场问题时,带

9、电粒子的重力是否考虑是正确而快速解题的前提,如何确定粒子的重力是否需要考虑?,提示:复合场中粒子重力是否考虑的三种情况(1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等一般应当考虑其重力.(2)在题目中有明确说明是否要考虑重力的,这种情况比较正规,也比较简单.(3)不能直接判断是否要考虑重力的,在进行受力分析与运动分析时,要由分析结果确定是否要考虑重力.,题型1 带电粒子在分区域场中的运动 【例1】 如图6所示,匀强电场区域和匀强磁场区域紧邻且宽度相等均为d,电场方向在纸平面内竖直向下,而磁场方向垂直

10、纸面向里.一带正电粒子从O点以速度v0沿垂直电场方向进入电场,从A点出电场进入磁场,离开电场时带电粒子在电场方向的偏转位移为电场宽度的一半,当粒子从磁场右边界上C点穿出磁场时速度方向与进入电场O点时的速度方向一致,d、v0已知(带电粒子重力不计),求:,题型探究,图6,(1)粒子从C点穿出磁场时的速度. (2)电场强度和磁感应强度的比值. 思路点拨 解答此题应把握以下三点: (1)正确地画出带电粒子的运动轨迹. (2)粒子在电场中做类平抛运动. (3)粒子在磁场中做匀速圆周运动.,解析 (1)粒子在电场中偏转时做类平抛运动,则 垂直电场方向d=v0t,平行电场方向 得vy=v0,到A点速度为v

11、=2v0,在磁场中速度大小不变,所以从C点出磁场时速度仍为 v0 (2)在电场中偏转时,射出A点时速度与水平方向成45 vy= ,并且vy=v0 得E= 在磁场中做匀速圆周运动,如右图所示 由几何关系得R= d 又qvB= ,且v= v0,得B= 解得 =v0 答案 (1) v0 (2)v0,方法提炼带电粒子在分区域电场、磁场中运动问题思路导图,变式练习1 如图7所示, 空间 分布着有理想边界的匀强电 场和匀强磁场.左侧匀强电场 的场强大小为E、方向水平向 右,电场宽度为L;中间区域匀 强磁场的磁感应强度大小为B,方向垂直纸面向外;右侧区域为垂直纸面向里的匀强磁场,磁感应强度也为B.一个质量为

12、m、电荷量为q、不计重力的带正电的粒子从电场的左边缘的O点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O点,然后重复上述运动过程.求:,图7,(1)中间磁场区域的宽度d. (2)带电粒子从O点开始运动到第一次回到O点所用时间t.,解析 (1)带电粒子在电场中加速,由动能定理,可得 qEL= mv2 带电粒子在磁场中偏转,由牛顿第二定律可得 qvB= 由以上两式,可得R=,可见在两磁场区粒子运动 半径相同,如下图所示,三 段圆弧的圆心组成的三角 形O1O2O3是等边三角形, 其边长为2R.所以中间磁场 区域的宽度为,d=Rsin 60= (2)在电场中t1= 在中间磁场中运动时间t

13、2= 在右侧磁场中运动时间t3= 则粒子第一次回到O点的所用时间为 t=t1+t2+t3= 答案 (1) (2),题型2 带电粒子在复合场中的运动 【例2】 如图8所示, 在水平地面上方有一范围足够大的互相正交的匀强电场和匀强磁场区域.磁场的磁感应强度为B,方向水平并垂直纸面向里.一质量为m、带电荷量为q的带正电微粒在此区域内沿竖直平面(垂直于磁场方向的平面)做速度大小为v的匀速圆周运动,重力加速度为g.(1)求此区域内电场强度的大小和方向.,图8,(2)若某时刻微粒在场中运动到P点时,速度与水平方向的夹角为60,且已知P点与水平地面间的距离等于其做圆周运动的半径.求该微粒运动到最高点时与水平

14、地面间的距离.(3)当带电微粒运动至最高点时,将电场强度的大小变为原来的 (方向不变,且不计电场变化对原磁场的影响),且带电微粒能落至地面,求带电微粒落至地面时的速度大小.,审题提示(1)当带电粒子在复合场中做匀速圆周运动时,合外力时刻指向圆心,速率不变,而重力和电场力的方向是无法改变的,只能是这两个力平衡,由洛伦兹力提供向心力.(2)根据圆周运动的速度必定是切线方向、圆心必定在垂直于速度方向的直线上的特点,正确地画出运动轨迹,再由几何关系找出最高点到地面的距离与轨道半径R的关系.(3)由于洛伦兹力不做功,所以利用动能定理来解决一般的曲线运动.,解析 (1)由于带电微粒可以在电场、磁场和重力场

15、共存的区域内沿竖直平面做匀速圆周运动,表明带电微粒所受的电场力和重力大小相等、方向相反,因此电场强度的方向竖直向上. 设电场强度为E,则有mg=qE,即E= . (2)设带电微粒做匀速圆周运动的轨道半径为R,根据牛顿第二定律和洛伦兹力公 式有qvB= ,解得R= . 依题意可画出带电微粒做匀速 圆周运动的轨迹如图所示,由 几何关系可知,该微粒运动至 最高点时与水平地面间的距离hm= R= .,(3)将电场强度的大小变为原来的 ,则电场力变为原来的 ,即F电= ,带电微粒运动过程中,洛伦兹力不做功,所以在它从最高点运动至地面的过程中,只有重力和电场力做功,设带电微粒落地时的速度大小为v1,根据动

16、能定理有 mghm-F电hm= mv12- mv2 解得v1= 答案 (1) ,方向竖直向上 (2) (3),方法提炼处理带电粒子在复合场中运动问题的技巧1.弄清复合场的组成.2.正确分析带电粒子的受力及运动特征.3.画出粒子运动轨迹,灵活选择不同的运动规律.4.对于临界问题,注意挖掘隐含条件,关注特殊 词语如“恰好”“刚好”“至少”,寻找解题的突破口.,变式练习2 如图9所示, 空间 存在匀强电场和匀强磁场,电场 方向为y轴正方向,磁场方向垂 直于xOy平面(纸面)向外,电场 和磁场都可以随意加上或撤除, 重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P(x=0,y=h)点以一定的速

17、度平行于x轴正向入射.这时若只有磁场,粒子将做半径为R0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P点运动到x=R0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x轴交于M点.不计重力.求:,图9,(1)粒子到达x=R0平面时速度方向与x轴的夹角以及粒子到x轴的距离. (2)M点的横坐标xM.,解析 (1)设粒子质量、带电荷量和入射速度分别为m、q和v0,则电场的场强E和磁场的磁感应强度B应满足下述条件,qE=qv0B qv0B= 只有电场时,入射粒子将以与电场方向相同的加速度 a= 做类平抛运动 粒子从P(x=0,y=h)点运动到

18、x=R0平面的时间为,t= 粒子到达x=R0平面时速度的y分量为 vy=at 由式得vy=v0 此时粒子速度大小为 v = 速度方向与x轴的夹角为= 粒子与x轴的距离为 H=h + at2=h + ,(2)撤除电场加上磁场后,粒子在磁场中做匀速圆周运动,设圆轨道半径为R,则 qvB= 由式得R= R0 粒子运动的轨迹如右图所示,其中圆弧的圆心C位于与速度v的方向垂直的直线上,该直线与x轴和y轴的夹角为/4.由几何关系及 式知C点的坐标为 xC=2R0 yC=H-R0=h- 过C点作x轴的垂线,垂足为D,在CDM中,=R= R0=yC=h- R0 由此求得M点的横坐标为xM=2R0+ 答案 (1

19、) h+ (2) 2R0+,题型3 带电粒子在电场和磁场中运动的综合分析 【例3】如图10所示,第四象限内有互相垂直的匀强电场E与匀强磁场B1,匀强电场大小E=0.5103 V/m,匀强磁场的方向垂直纸面向里,其大小B1=0.5 T;第一象限的某个矩形区域内,有方向垂直纸面向里的匀强磁场B2,磁场的下边界与x轴重合.一质量m=110-14 kg、电荷量q=110-10 C的带正电微粒,以某一初速度v沿与y轴正方向成60角从M点进入第四象限后沿直线运动,在P点进入处于第一象限内的磁场B2区域.一段时间后,微粒经过 y轴上的N点并以与y轴正方向成60角飞出.M点的坐标为(0,-10),N点的坐标为

20、(0,30),不计微粒重力,g取10 m/s2.,(1)请分析判断匀强电场E的方向并求出微 粒的速度大小. (2)匀强磁场B2的大小为多大? (3)B2磁场区域的最小面积为多少?,图10,解析,答案,评分标准,名师导析,自我批阅 (18分)在地面附近的真空中,存在着竖直向上的匀强电场和 垂直电场方向水平向里的匀强磁场,如图11甲所示.磁场随 时间变化情况如图乙所示.该区域中有一条水平直线MN,D 是MN上的一点.在t=0时刻,有一个质量为m、电荷量为+q的 小球(可看作质点),从M点开始沿着水平直线以速度v0做匀 速直线运动,t0时刻恰好到达N点.经观测发现,小球在t=2t0至 t=3t0时间

21、内的某一时刻,又竖直向下经过直线MN上的D点, 并且以后小球多次水平向右或竖直向下经过D点.求:,(1)电场强度E的大小. (2)小球从M点开始运动到第二次经过D点所用的时间. (3)小球运动的周期,并画出运动轨迹(只画一个周期).,解析,答案,素能提升,1.有一个带电量为+q、重为G的小球,从两竖直的带电平行板上方h处自由落下,两极板间另有匀强磁场,磁感应强度为B,方向如图11所示,则带电小球通过有电场和磁场的空间时,下列说法错误的是 ( )A.一定作曲线运动B.不可能做曲线运动C.有可能做匀加速运动D.有可能做匀速运动,图11,解析 由于小球的速度变化时,洛伦兹力会变化,小球所受合力变化,

22、小球不可能做匀速或匀加速运动,B、C、D错.答案 BCD,2.空间存在一匀强磁场B,其方向垂直纸面向里,另有一个点电荷+Q的电场,如图12所示,一带电粒子q以初速度v0从某处垂直电场、磁场入射,初位置到点电荷的距离为r,则粒子在电、磁场中的运动轨迹可能为 ( )A.以+Q为圆心,r为半径的纸面内的圆周B.沿初速度v0方向的直线C.开始阶段在纸面内向左偏的曲线D.开始阶段在纸面内向右偏的曲线,图12,ACD,3.在如图所示的匀强电场和匀强磁场共存的区域内(不计重力),电子可能沿水平方向向右做直线运动的是 ( ),解析 如电子水平向右运动,在A图中电场力水平向左,洛伦兹力竖直向下,故不可能;在B图

23、中,电场力水平向左,洛伦兹力为零,故电子可能水平向右匀减速直线运动;在C图中电场力竖直向上,洛伦兹力竖直向下,当二者大小相等时,电子向右做匀速直线运动;在D图中电场力竖直向上,洛伦兹力竖直向上,故电子不可能做水平向右的直线运动,因此只有选项B、C正确.答案 BC,4.如图13所示,空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场.一带电粒子在电场力和洛伦兹力共同作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C为运动的最低点,不计重力,则 ( )A.该粒子必带正电荷B.A、B两点位于同一高度C.粒子到达C时的速度最大D.粒子到达B点后,将沿原曲线返回A点,图13,解析 在不计重

24、力情况下,粒子从A点静止开始向下运动,说明粒子受向下的电场力,带正电,选项A正确.整个过程中只有电场力做功,而A、B两点粒子速度都为零,所以A、B在同一等势面上,选项B正确.运动到C点时粒子在电场力方向上发生的位移最大,电场力做功最多,离子速度最大,选项C正确.离子从B点向下运动时受向右的洛伦兹力,将向右偏,故选项D错.答案 ABC,5.如图14所示,空间内存在着方向竖直向下的匀强电场E和垂直纸面向里的匀强磁场B.一个质量为m的带电液滴,在竖直平面内做圆周运动,下列说法不正确的是 ( )A.液滴在运动过程中速率不变B.液滴所带电荷一定为负电荷,电荷量大小为mg/EC.液滴一定沿顺时针方向运动D

25、.液滴可以沿逆时针方向运动,也可以沿顺时针方向运动,图14,解析 很显然,液滴共受三个力:重力、电场力和洛伦兹力.圆周运动要么是匀速圆周运动,要么是非匀速圆周运动.如果重力和电场力的合力不为零,液滴必然会沿这个合力方向有一个分运动,那么液滴就不可能沿圆周运动,所以重力和电场力一定相平衡,即液滴一定做匀速圆周运动,A选项正确;电场力一定向上,故液滴必带负电荷,由mg=Eq得q=mg/E,B选项正确;由左手定则可判定液滴必沿顺时针方向运动,因为洛伦兹力始终指向圆心,故C对,D错.答案 D,6.在地面上方某处的真空室里存在着水平方向的匀强电场,以水平向右和竖直向上为x轴、y轴正方向建立如图15所示的

26、平面直角坐标系.一质量为m、带电荷 量为+q的微粒从点P( l,0)由静止释放后沿直线PQ运动.当微粒到达点Q(0,-l)的瞬间,撤去电场,同时加上一个垂直于纸面向外的匀强磁场(图中未画出), 磁感应强度的大小B= ,该磁场有理想的下边界,其他方向范围无限大.已知重力加速度为g.求:,图15,(1)匀强电场的场强E的大小.(2)撤去电场加上磁场的瞬间,微粒所受合外力的大小和方向.(3)欲使微粒不从磁场下边界穿出,该磁场下边界的y轴坐标值应满足什么条件?解析 (1)由于微粒沿PQ方向运动,可知微粒所受的合力沿PQ方向,可得qE=mgcot易知 =60解得E= mg,(2)微粒到达Q点的速度v可分

27、解为水平分速度为v1和竖直分速度为v2,根据竖直方向上自由落体运动规律,有=2gl则v2=v1=v2tan 30=对于水平分速度v1,其所对应的洛伦兹力大小为F洛1,方向竖直向上则F洛1=qv1B=q =mg即与重力恰好平衡,对于竖直分速度v2,其所对应的洛伦兹力大小为F洛2,方向水平向左,此力为微粒所受的合力F=F洛2=qv2B=q = mg(3)由(2)可知,微粒的运动可以看作水平面内的匀速直线运动与竖直面内的匀速圆周运动的合成.能否穿过下边界取决于竖直面内的匀速圆周运动,则qv2B=解得r =,所以欲使微粒不从其下边界穿出,磁场下边界的y坐标值应满足y-(r+l)=-( +1)l,反思总结,返回,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报