1、不等式一不等式的性质:1 同向不等式可以相加;异向不等式可以相减:若 ,abcd,则 acbd(若,abcd,则 acbd) ,但异向不等式不可以相加;同向不等式不可以相减;2 左右同正不等式:同向的不等式可以相乘,但不能相除; 异向不等式可以相除,但不能相乘:若 0,,则 (若 0,ab,则 c) ;3 左右同正不等式:两边可以同时乘方或开方:若 0ab,则 nab或 n;4若 ab, ,则 1;若 , ,则 1。如(1)对于实数 c,中,给出下列命题: 2b则若 ; bac则若 ,2; ,0aa则若 ; 10则若 ; b则若 ; 则若 ,; cac则若 ,; ab,则 ,0ab。其中正确的
2、命题是_(2)已知 1xy, 13xy,则 xy的取值范围是_(3)已知 cba,且 ,0b则 的取值范围是 _二不等式大小比较的常用方法:1作差:作差后通过分解因式、配方等手段判断差的符号得出结果;2 作商(常用于分数指数幂的代数式) ;3分析法;4平方法;5分子(或分母)有理化;6利用函数的单调性;7寻找中间量或放缩法 ;8图象法。其中比较法(作差、作商)是最基本的方法。如(1)设 0,1ta且 ,比较 21logl21ttaa和 的大小(2)设 a, 12pa, 24aq,试比较 qp,的大小(3)比较 1+ 3logx与 )10(2lxx且 的大小三利用重要不等式求函数最值时,你是否注
3、意到:“一正二定三相等,和定积最大,积定和最小”这 17 字方针。如(1)下列命题中正确的是A、 yx的最小值是 2 B、23xy的最小值是 2C、 423(0)的最大值是 43 D、 4(0)的最小值是 43(2)若 1xy,则 xy的最小值是_(3)正数 ,满足 ,则 1的最小值为_四.常用不等式有:(1)2 21abab(根据目标不等式左右的运算结构选用) ;(2)a、b、c R, 22cc(当且仅当 bc时,取等号) ;(3)若0,m,则 a(糖水的浓度问题) 。如如果正数 、 b满足 3b,则 a的取值范围是_五简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式
4、的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现 ()fx的符号变化规律,写出不等式的解集。如(1)解不等式 2(1)0x。(2)不等式 3的解集是_(3)要使满足关于 的不等式 092ax(解集非空)的每一个 x的值至少满足不等式86042x和中的一个,则实数 的取值范围是 _.六分式不等式的解法:分式不等式的一般解题思路是先移项使右边为 0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母
5、。如(1)解不等式 2513x(2)关于 x的不等式 0bax的解集为 ),1(,则关于 x的不等式 02bax的解集为_七绝对值不等式的解法:(1)分段讨论法(最后结果应取各段的并集):如解不等式 |21|432| x(2)利用绝对值的定义;(3)数形结合;如解不等式 |1|3x(4)两边平方:如若不等式 2|a对 xR恒成立,则实数 a的取值范围为_。八含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键 ”注意解完之后要写上:“综上,原不等式的解集是” 。注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集. 如(1)若 2log13
6、a,则 的取值范围是_(2)解不等式 ()xaR提醒:(1)解不等式是求不等式的解集,最后务必有集合的形式表示;(2)不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。如关于 x的不等式 0bax 的解集为),(,则不等式 02bax的解集为_九含绝对值不等式的性质: ab、同号或有 |ab|ab;、异号或有 0.十不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法)1).恒成立问题若不等式 Axf在区间 D上恒成立,则等价于在区间 D上 minfxA若不等式
7、 B在区间 上恒成立,则等价于在区间 上 aB如(1)设实数 ,y满足 22(1)y,当 0xyc时, 的取值范围是_(2)不等式 ax34对一切实数 恒成立,求实数 的取值范围_(3)若不等式 m对满足 的所有 都成立,则 x的取值范围_(4)若不等式 nn1)(2)1(对于任意正整数 n恒成立,则实数 a的取值范围是_(5)若不等式 20x对 x的所有实数 都成立,求 m的取值范围.2). 能成立问题若在区间 D上存在实数 使不等式 Af成立,则等价于在区间 D上 axfA;若在区间 上存在实数 使不等式 B成立,则等价于在区间 上的 inB.如已知不等式 ax34在实数集 R上的解集不是
8、空集,求实数 的取值范围_3). 恰成立问题若不等式 Af在区间 上恰成立, 则等价于不等式 Axf的解集为 ;若不等式 B在区间 上恰成立, 则等价于不等式 B的解集为 .概念、方法、题型、易误点及应试技巧总结不等式 参考答案一4 (1) (答: ;(2) 137xy;(3) 12,二 (1)当 a时, 1loglaatt( 时取等号) ;当 0a时,logl22att( 时取等号) ; (2) pq; (3)当 1x或 43时,1+3x x;当 413时,1+ 3lx logx;当 4时,1+ logx 2lx三 (1)C (2) ; (3) 四.(2) 9,五 (1) |x或 ;(2) |3x或 1;(3) 817,)六 (1) (,),3;(2) ),2()1,(;七 (1) R;(2) ,(4)八 (1) a或 03; (2) 时, |x; 0a时, 1|xa或 0; 时, 1|0xa或 x)提醒:(1,2)十1).(1) 1,;(2) 1;(3) ( 72, 3) ;(4) 32,);(5) 12m2). a