1、14.6 用尺规作线段与角教学目标1会用直尺和圆规作一条线段等于已知线段2会用直尺和圆规作一个角等于已知角3会利用基本作图进行简单的尺规作图教 学重难点1用尺规作线段(角)等于已知线段(角)2线段的和、差、倍、分的作法3角的 和、差、倍、分的作法教学过程导入新课在现实生活中,我们经常见到一些美丽的图案,如下列图案图案(1)、(2)、(3)是我们曾经画过的想一想,这些图案是利用哪些作图工具画出的?直尺、圆规和三角尺是常用的作图工具,利用这些工具可以作出很多的几何图形在以后的作图中,我们运用最多的作图工具是没有刻度的直尺和圆规我们把只用没有刻度的直尺和圆规的作图称为尺规作图这一节我们就来学习用尺规
2、作图用尺规作线段与角(板书课题)推进新 课1作一条线段等于已知线段活动一:学生预习课本例 1,教师按照下面作图步骤演示作图过程已知:线段 AB.求作:线段 A B,使 A B AB.作法:(1)作射线 A C.(2)以点 A为圆心,以 AB的长为半径画弧,交射线 A C于点 B.A B就是所求的线段教师总结:今后的作图中,要注意作图 步骤的书写就现在来说,只要求大家了解尺规作图 的步骤2作一个角等于已知角活动二:学生预习课本例 2,教师按照例题的作图步骤演示作图过程已知: AOB(如图 1)求作: DEF,使 DEF AOB.图 12作法:(1)在 AOB 上以点 O 为圆心,任意长为半径画弧
3、,分别交 O A, OB 于点 P, Q(如图 1);(2)作射线 EG,并以点 E 为圆心, OP 长为半径画弧交 EG 于点 D;(3)以点 D 为圆心, PQ 长为半径画弧交第(2)步中所画弧于点 F;(4)作射线 EF(如图 2) DEF 即为所求作的角图 2教师总结:用尺规作图具有以下四个步骤:(1)已知,即:已知的条件是什么(2)求作,即:所要作的最终的结果是什么,满足什么条件(3)分析,即:分析如何作出 所要求作的图形,一般不用写出来(4)作法,这是作图的主要步骤,在这里要写清作图的过程巩固训练1课本练习2画一个钝角 AOB,然后以 O 为顶点,以 OA 为一边,在角的内部画一条
4、射线 OC,使 AOC90,正确的图形是( )3下列尺规作图的语句错误的是( )A作 AOB,使 AOB31B以点 O 为圆心作弧C以点 A 为圆心,线段 a 的长为半径作弧D作 ABC,使 ABC12本课小结通过这节课的学习活动你有哪些收获?本节课我们主要学习了用尺规作一条线段等于已知线段和作一个角等于已知角正式呈现了尺规作图的步骤,写出了“已知” “求作” ,且按照程序化的方式写出了“作法”大家在今后的作图中,要按这些步骤进行要特别注意的是:作图时一定要保留作图痕迹尺规作图与“几何作图三大难题”尺规作图是指只用圆规和没有刻度的直尺来作图由于对作图工具的限制,使得一些貌似简单 的几何作图问题难以解决利用尺规可以将任 意角二等分,那么能利用尺规将一个任意角三等分吗?你能作出一个立方体的边,使该立方体的体积为给定立方体的 2 倍吗?利用尺规我们能作立方体和圆,那你能不能作一个正方形使其与给定的圆的面积相等?这三个由尺规作图引出的问题,便是数学史上著名的几何三大问题它是公元前 5 世纪首次3由古希腊雅典城内一个包括各方面学者的智者(巧辩)学 派提出的 这三个作图题一般分别称为:1.三等分角;2.倍立方体;3.化圆为方