收藏 分享(赏)

2017年高考数学(理)(全国II卷)详细解析.doc

上传人:weiwoduzun 文档编号:2799120 上传时间:2018-09-27 格式:DOC 页数:20 大小:1.18MB
下载 相关 举报
2017年高考数学(理)(全国II卷)详细解析.doc_第1页
第1页 / 共20页
2017年高考数学(理)(全国II卷)详细解析.doc_第2页
第2页 / 共20页
2017年高考数学(理)(全国II卷)详细解析.doc_第3页
第3页 / 共20页
2017年高考数学(理)(全国II卷)详细解析.doc_第4页
第4页 / 共20页
2017年高考数学(理)(全国II卷)详细解析.doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、1绝密启用前2017 年普通高等学校招生全国统一考试新课标 II 卷理科数学一、选择题:本题共 12 小题,每小题 5 分,共 60 分在每小题给出的四个选项中,只有一项是符合题目要求的1 3iA B C D212i2i2i【答案】D2设集合 , 若 ,则1,24A240Bxm1ABA B C D,31, ,31,5【答案】C【解析】试题分析:由 得 ,即 是方程 的根,所以11x240xm, ,故选 C140,3m,B【考点】 交集运算、元素与集合的关系【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性两个防

2、范:不要忽视元素的互异性;保证运算的准确性3我国古代数学名著算法统宗 中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座 7 层塔共挂了 381 盏灯,且相邻两层中的下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯A1 盏 B3 盏 C5 盏 D9 盏2【答案】B4如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A 90B 63C 42D 【答案】B【解析】试题分析:由题意,该几何体是一个组合体,下半部分是一个底面半径为 3,高为 4 的圆柱,其体积 ,上半部分是一个底

3、面半径为 3,高为 6 的圆柱的一半,21346V其体积 ,故该组合体的体积 故2()7127V选 B【考点】 三视图、组合体的体积【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解35设 , 满足约束条件 ,则 的最小值是xy230xy2zxyA B C D 19【答案】A6安排 3

4、 名志愿者完成 4 项工作,每人至少完成 1 项,每项工作由 1 人完成,则不同的安排方式共有A12 种 B18 种 C24 种 D36 种【答案】D【解析】试题分析:由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有 种方法,然后进行全排列,由乘法原理,不同的安排方式共有24C种 故选 D234CA6【考点】 排列与组合、分步乘法计数原理【名师点睛】 (1)解排列组合问题要遵循两个原则:按元素(或位置)的性质进行分类;按事情发生的过程进行分步具体地说,解排列组合问题常以元素(或位置) 为主体,即先满足特殊元素(或位置) ,再考虑其他元素(或位置)4(2

5、)不同元素的分配问题,往往是先分组再分配在分组时,通常有三种类型:不均匀分组;均匀分组;部分均匀分组注意各种分组类型中,不同分组方法的求解7甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩老师说:你们四人中有 2 位优秀,2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩看后甲对大家说:我还是不知道我的成绩根据以上信息,则A乙可以知道四人的成绩 B丁可以知道四人的成绩C乙、丁可以知道对方的成绩 D乙、丁可以知道自己的成绩【答案】D8执行右面的程序框图,如果输入的 ,则输出的1aSA2 B3 C4 D5【答案】B59若双曲线 ( , )的一条渐近线被圆 所截得的:C21xy

6、ab0ab24xy弦长为 2,则 的离心率为A2 B C D323【答案】A【解析】试题分析:由几何关系可得,双曲线 的渐近线方程为 ,210,xyab0bxay圆心 到渐近线距离为 ,则点 到直线 的距离为2,023d2,,23badc即 ,整理可得 ,双曲线的离心率 故选 A24()c24a24cea【考点】 双曲线的离心率;直线与圆的位置关系,点到直线的距离公式【名师点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围) ,常见有两种方法:求出 a,c,代入公式 ;只cea需要根据一个条件得到关于 a,b,c 的齐次式,结合 b2c 2a 2 转化为 a,c

7、 的6齐次式,然后等式(不等式)两边分别除以 a 或 a2 转化为关于 e 的方程(不等式),解方程(不等式) 即可得 e(e 的取值范围)10已知直三棱柱 中, , , ,则异面直线1ABC10ABC1BC与 所成角的余弦值为1A B C D3251053【答案】C11若 是函数 的极值点,则 的极小值为2x21()exfxa()fxA B C D113 35e【答案】A【解析】试题分析:由题可得 ,12121()2)e()e()exx xfxaaa 因为 ,所以 , ,故 ,(2)0f21()xf21()xf7令 ,解得 或 ,所以 在 上单调递增,在()0fx2x1()fx,2)(1,上

8、单调递减,2,1所以 的极小值为 ,故选 A()f 1()ef【考点】 函数的极值、函数的单调性【名师点睛】 (1)可导函数 yf(x )在点 x0 处取得极值的充要条件是 f (x0)0,且在 x0 左侧与右侧 f (x)的符号不同学*;(2)若 f(x)在(a,b)内有极值,那么 f(x)在(a ,b) 内绝不是单调函数,即在某区间上单调增或减的函数没有极值12已知 是边长为 2 的等边三角形, 为平面 内一点,则 的最ABC PABC()PABC小是A B C D23431【答案】B解等问题,然后利用函数、不等式、方程的有关知识来解决8二、填空题:本题共 4 小题,每小题 5 分,共 2

9、0 分13一批产品的二等品率为 ,从这批产品中每次随机取一件,有放回地抽取 次,0.2 10表示抽到的二等品件数,则 _XDX【答案】 1.96【解析】试题分析:由题意可得,抽到二等品的件数符合二项分布,即 ,由二10,.2XB项分布的期望公式可得 10.298.6DXnp【考点】 二项分布的期望与方差【名师点睛】判断一个随机变量是否服从二项分布,要看两点:是否为 n 次独立重复试验,在每次试验中事件 A 发生的概率是否均为 p;随机变量是否为在这 n 次独立重复试验中某事件发生的次数,且 表C1nkknXp示在独立重复试验中,事件 A 恰好发生 k 次的概率14函数 的最大值是_23()si

10、cos4fx(0,)2x【答案】115等差数列 的前 项和为 , , ,则 _nanS3a410S1nkS【答案】 21【解析】916已知 是抛物线 的焦点, 是 上一点, 的延长线交 轴于点 若F:C28yxMCFyN为 的中点,则 _MNF【答案】6【解析】试题分析:如图所示,不妨设点 M 位于第一象限,设抛物线的准线与 轴交于点 ,作xF与点 , 与点 ,由抛物线的解析式可得准线方程为 ,则BlNAl 2,在直角梯形 中,中位线 ,由抛物线的定2,4AFF 3ANB义有: ,结合题意,有 ,故3M3N6【考点】抛物线的定义、梯形中位线在解析几何中的应用10【名师点睛】抛物线的定义是解决抛

11、物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化三、解答题:共 70 分解答应写出文字说明、证明过程或演算步骤第 1721 题为必考题,每个试题考生都必须作答第 22、23 题为选考题,考生根据要求作答(一)必考题:共 60 分17 ( 12 分)的内角 的对边分别为 ,已知 ABC , ,abc2sin8sinBAC(1 )求 ;cos(2 )若 , 的面

12、积为 ,求 6aABC 2【答案】 (1) ;( 2) 15s7b“边转角” “角转边” ,另外要注意 三者之间的关系,这样的题目小而活,2,ac备受命题者的青睐1118 ( 12 分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了 100 个网箱,测量各箱水产品的产量(单位:kg) 其频率分布直方图如下:(1 )设两种养殖方法的箱产量相互独立,记 A 表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于 50kg”,估计 A 的概率;(2 )填写下面列联表,并根据列联表判断是否有 99%的把握认为箱产量与养殖方法有关:箱产量 50kg 箱产量 50kg旧

13、养殖法新养殖法(3 )根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01) 附: ,22()(nadbcK【答案】 (1) ;(2)有 的把握认为箱产量与养殖方法有关;(3)0.499%52.3kg12【考点】 独立事件概率公式、独立性检验原理、频率分布直方图估计中位数【名师点睛】 (1)利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测独立性检验就是考察两个分类变量是否有关系,并能较为准确地给出这种判断的可信度,随机变量的观测值值越大,说明“两个变量有关系”的可能性越大13(2)利用频率分布直方图求众数、中位数和平均数时,应注意三点:最高的小长方

14、形底边中点的横坐标即众数;中位数左边和右边的小长方形的面积和是相等的;平均数是频率分布直方图的“重心” ,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和19( 12 分)如图,四棱锥 P-ABCD 中,侧面 PAD 为等边三角形且垂直于底面 ABCD, E 是o1,90,2ABCDBACPD 的中点(1 )证明:直线 平面 PAB;E(2 )点 M 在棱 PC 上,且直线 BM 与底面 ABCD 所成角为,求二面角 的余弦值o45ABD【答案】 (1)证明略;(2) 1051415【考点】 判定线面平行、面面角的向量求法【名师点睛】 (1)求解本题要注意两点:两平面的法

15、向量的夹角不一定是所求的二面角,利用方程思想进行向量运算,要认真细心、准确计算(2)设 m,n 分别为平面 , 的法向量,则二面角 与互补或相等,故有|cos |cos|= 求解时一定要注意结合实际图形判断所求角是锐角还是钝角20 ( 12 分)设 O 为坐标原点,动点 M 在椭圆 C: 上,过 M 作 x 轴的垂线,垂足为 N,点21xyP 满足 2N16(1 )求点 P 的轨迹方程;(2 )设点 Q 在直线 上,且 证明:过点 P 且垂直于 OQ 的直线 l 过 C3x1OPQ的左焦点 F 【答案】 (1) ;( 2)证明略2y【考点】 轨迹方程的求解、直线过定点问题【名师点睛】求轨迹方程

16、的常用方法:(1)直接法:直接利用条件建立 x,y 之间的关系 F(x,y )0(2)待定系数法:已知所求曲线的类型,求曲线方程(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程(4 )代入( 相关点) 法:动点 P(x,y )依赖于另一动点 Q(x0,y 0)的变化而运动,常利用代入法求动点 P(x,y) 的轨迹方程1721( 12 分)已知函数 ,且 2()lnfaxx()0f(1 ) 求 ;(2 ) 证明: 存在唯一的极大值点 ,且 ()f 0220e()fx【答案】 (1) ;(2)证明见解析a(2 )由(1 )知 , 2lnfxx()2lnfx

17、设 ,则 lnhx1()h当 时, ;当 时, ,(0,)20x,)2x()0hx所以 在 上单调递减,在 上单调递增x1(又 , , ,所以 在 有唯一零点 ,在 有2eh()1hx1(,)20x1,)2唯一零点 1,且当 时, ;当 时, ,当 时,0,x0x0,h,h因为 ,所以 是 的唯一极大值点()fx0xf18由 得 ,故 0()fx0ln21x001fxx由 得 ,14f因为 是 在(0, 1)的最大值点,0x由 , 得 1e,(e)f120()efxf所以 220x【考点】利用导数研究函数的单调性、利用导数研究函数的极值【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工

18、具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出导数专题在高考中的命题方向及命题角度:从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用(二)选考题:共 10 分请考生在第 22、23 题中任选一题作答如果多做,则按所做的第一题计分22选修 44:坐标系与参数方程(10 分)在直角坐标系 xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线

19、的1C极坐标方程为 cos4(1 ) M 为曲线 上的动点,点 P 在线段 OM 上,且满足 ,求点 P 的轨1C|6OM迹 的直角坐标方程;2(2 )设点 A 的极坐标为 ,点 B 在曲线 上,求 面积的最大值(2,)32CAB【答案】 (1) ;(2) 40xyx319(2 )设点 B 的极坐标为 ,由题设知 ,于是,0B2,4cosBOA的面积OA S1 3sin4cos|in()|2sin()|2.23B 当 时,S 取得最大值 ,所以 面积的最大值为 2OAB【考点】圆的极坐标方程与直角坐标方程、三角形面积的最值【名师点睛】本题考查了极坐标方程的求法及应用。重点考查了转化与化归能力遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用极坐标的几何意义求解解题时要结合题目自身特点,确定选择何种方程23选修 45:不等式选讲(10 分)已知 证明:30,2ab(1 ) ;5()4(2 ) 【答案】 (1)证明略;(2)证明略20【考点】 基本不等式、配方法

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 高考课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报