1、第 1 页 共 60 页Mendels Paper in English Experiments in Plant Hybridization (1865)by Gregor MendelRead at the meetings of February 8th, and March 8th, 1865 1 Introductory RemarksExperience of artificial fertilization, such as is effected with ornamental plants in order to obtain new variations in color,
2、 has led to the experiments which will here be discussed. The striking regularity with which the same hybrid forms always reappeared whenever fertilization took place between the same species induced further experiments to be undertaken, the object of which was to follow up the developments of the h
3、ybrids in their progeny. To this object numerous careful observers, such as Klreuter, Grtner, Herbert, Lecoq, Wichura and others, have devoted a part of their lives with inexhaustible perseverance. Grtner especially in his work Die Bastarderzeugung im Pflanzenreiche , has recorded very valuable obse
4、rvations; and quite recently Wichura published the results of some profound investigations into the hybrids of the Willow. That, so far, no generally applicable law governing the formation and development of hybrids has been successfully formulated can hardly be wondered at by anyone who is acquaint
5、ed with the extent of the task, and can appreciate the difficulties with which experiments of this class have to contend. A final decision can only be arrived at when we shall have before us the results of detailed experiments make on plants belonging to the most diverse orders. Those who survey the
6、 work done in this department will arrive at the conviction that among all the numerous experiments made, not one has been carried out to such an extent and in such a way as to make it possible to determine the number of different forms under which the offspring of the hybrids appear, or to arrange
7、these forms with certainty according to their separate generations, or definitely to ascertain their statistical relations. 第 2 页 共 60 页It requires indeed some courage to undertake a labor of such far-reaching extent; this appears, however, to be the only right way by which we can finally reach the
8、solution of a question the importance of which cannot be overestimated in connection with the history of the evolution of organic forms. The paper now presented records the results of such a detailed experiment. This experiment was practically confined to a small plant group, and is now, after eight
9、 years pursuit, concluded in all essentials. Whether the plan upon which the separate experiments were conducted and carried out was the best suited to attain the desired end is left to the friendly decision of the reader. 2 Selection of the Experimental PlantsThe value and utility of any experiment
10、 are determined by the fitness of the material to the purpose for which it is used, and thus in the case before us it cannot be immaterial what plants are subjected to experiment and in what manner such experiment is conducted. The selection of the plant group which shall serve for experiments of th
11、is kind must be made with all possible care if it be desired to avoid from the outset every risk of questionable results. The experimental plants must necessarily: 1. Possess constant differentiating characteristics. 2. The hybrids of such plants must, during the flowering period, be protected from
12、the influence of all foreign pollen, or be easily capable of such protection.The hybrids and their offspring should suffer no marked disturbance in their fertility in the successive generations. Accidental impregnation by foreign pollen, if it occurred during the experiments and were not recognized,
13、 would lead to entirely erroneous conclusions. Reduced fertility or entire sterility of certain forms, such as occurs in the offspring of many hybrids, would render the experiments very difficult or entirely frustrate them. In order to discover the relations in which the hybrid forms stand towards e
14、ach other and also towards their progenitors it appears to be necessary that all member of the series developed in each successive generations should be, without exception, subjected to observation. 第 3 页 共 60 页At the very outset special attention was devoted to the Leguminosae on account of their p
15、eculiar floral structure. Experiments which were made with several members of this family led to the result that the genus Pisum was found to possess the necessary qualifications. Some thoroughly distinct forms of this genus possess characters which are constant, and easily and certainly recognizabl
16、e, and when their hybrids are mutually crossed they yield perfectly fertile progeny. Furthermore, a disturbance through foreign pollen cannot easily occur, since the fertilizing organs are closely packed inside the keel and the anthers burst within the bud, so that the stigma becomes covered with po
17、llen even before the flower opens. This circumstance is especially important. As additional advantages worth mentioning, there may be cited the easy culture of these plants in the open ground and in pots, and also their relatively short period of growth. Artificial fertilization is certainly a somew
18、hat elaborate process, but nearly always succeeds. For this purpose the bud is opened before it is perfectly developed, the keel is removed, and each stamen carefully extracted by means of forceps, after which the stigma can at once be dusted over with the foreign pollen. In all, 34 more or less dis
19、tinct varieties of Peas were obtained from several seedsmen and subjected to a two years trial. In the case of one variety there were noticed, among a larger number of plants all alike, a few forms which were markedly different. These, however, did not vary in the following year, and agreed entirely
20、 with another variety obtained from the same seedsman; the seeds were therefore doubtless merely accidentally mixed. All the other varieties yielded perfectly constant and similar offspring; at any rate, no essential difference was observed during two trial years. For fertilization 22 of these were
21、selected and cultivated during the whole period of the experiments. They remained constant without any exception. Their systematic classification is difficult and uncertain. If we adopt the strictest definition of a species, according to which only those individuals belong to a species which under p
22、recisely the same circumstances display precisely similar characters, no two of these varieties could be referred to one species. According to the opinion of experts, however, the majority belong to the species Pisum sativum; while the rest are regarded and classed, some as sub-species of P. sativum
23、, and some as independent species, such as P. quadratum, P. saccharatum, and P. umbellatum. The positions, however, which may be assigned to them in a classificatory system are quite immaterial for the purposes of the experiments in question. It has so far been found 第 4 页 共 60 页to be just as imposs
24、ible to draw a sharp line between the hybrids of species and varieties as between species and varieties themselves. 3 Division and Arrangement of the ExperimentsIf two plants which differ constantly in one or several characters be crossed, numerous experiments have demonstrated that the common chara
25、cters are transmitted unchanged to the hybrids and their progeny; but each pair of differentiating characters, on the other hand, unite in the hybrid to form a new character, which in the progeny of the hybrid is usually variable. The object of the experiment was to observe these variations in the c
26、ase of each pair of differentiating characters, and to deduce the law according to which they appear in successive generations. The experiment resolves itself therefore into just as many separate experiments are there are constantly differentiating characters presented in the experimental plants. Th
27、e various forms of Peas selected for crossing showed differences in length and color of the stem; in the size and form of the leaves; in the position, color, size of the flowers; in the length of the flower stalk; in the color, form, and size of the pods; in the form and size of the seeds; and in th
28、e color of the seed-coats and of the albumen cotyledons. Some of the characters noted do not permit of a sharp and certain separation, since the difference is of a “more or less“ nature, which is often difficult to define. Such characters could not be utilized for the separate experiments; these cou
29、ld only be applied to characters which stand out clearly and definitely in the plants. Lastly, the result must show whether they, in their entirety, observe a regular behavior in their hybrid unions, and whether from these facts any conclusion can be reached regarding those characters which possess
30、a subordinate significance in the type. The characters which were selected for experiment relate: 1. To the difference in the form of the ripe seeds. These are either round or roundish, the depressions, if any, occur on the surface, being always only shallow; or they are irregularly angular and deep
31、ly wrinkled (P. quadratum). 2. To the difference in the color of the seed albumen (endosperm). The albumen of the ripe seeds is either pale yellow, bright yellow and orange colored, or it possesses a more or less intense green tint. This difference of color is easily seen in the seeds as their coats
32、 are transparent. 第 5 页 共 60 页3. To the difference in the color of the seed-coat. This is either white, with which character white flowers are constantly correlated; or it is gray, gray-brown, leather-brown, with or without violet spotting, in which case the color of the standards is violet, that of
33、 the wings purple, and the stem in the axils of the leaves is of a reddish tint. The gray seed-coats become dark brown in boiling water. 4. To the difference in the form of the ripe pods. These are either simply inflated, not contracted in places; or they are deeply constricted between the seeds and
34、 more or less wrinkled (P. saccharatum). 5. To the difference in the color of the unripe pods. They are either light to dark green, or vividly yellow, in which coloring the stalks, leaf-veins, and calyx participate.* 6. To the difference in the position of the flowers. They are either axial, that is
35、, distributed along the main stem; or they are terminal, that is, bunched at the top of the stem and arranged almost in a false umbel; in this case the upper part of the stem is more or less widened in section (P. umbellatum). 7. To the difference in the length of the stem. The length of the stem is
36、 very various in some forms; it is, however, a constant character for each, in so far that healthy plants, grown in the same soil, are only subject to unimportant variations in this character. In experiments with this character, in order to be able to discriminate with certainty, the long axis of 6
37、to 7 ft. was always crossed with the short one of 3/4 ft. to 1 and 1/2 ft. Each two of the differentiating characters enumerated above were united by cross-fertilization. There were made for the 1st trial 60 fertilizations on 15 plants.2nd trial 58 fertilizations on 10 plants.3rd trial 35 fertilizat
38、ions on 10 plants.4th trial 40 fertilizations on 10 plants.5th trial 23 fertilizations on 5 plants.6th trial 34 fertilizations on 10 plants.7th trial 37 fertilizations on 10 plants.*One species possesses a beautifully brownish-red colored pod, which when ripening turns to violet and blue. Trials wit
39、h this character were only begun last year.第 6 页 共 60 页From a larger number of plants of the same variety only the most vigorous were chosen for fertilization. Weakly plants always afford uncertain results, because even in the first generation of hybrids, and still more so in the subsequent ones, ma
40、ny of the offspring either entirely fail to flower or only form a few and inferior seeds. Furthermore, in all the experiments reciprocal crossings were effected in such a way that each of the two varieties which in one set of fertilizations served as seed-bearer in the other set was used as the poll
41、en plant. The plants were grown in garden beds, a few also in pots, and were maintained in their natural upright position by means of sticks, branches of trees, and strings stretched between. For each experiment a number of pot plants were placed during the blooming period in a greenhouse, to serve
42、as control plants for the main experiment in the open as regards possible disturbance by insects. Among the insects which visit Peas the beetle Bruchus pisi might be detrimental to the experiments should it appear in numbers. The female of this species is known to lay the eggs in the flower, and in
43、so doing opens the keel; upon the tarsi of one specimen, which was caught in a flower, some pollen grains could clearly be seen under a lens. Mention must also be made of a circumstance which possibly might lead to the introduction of foreign pollen. It occurs, for instance, in some rare cases that
44、certain parts of an otherwise normally developed flower wither, resulting in a partial exposure of the fertilizing organs. A defective development of the keel has also been observed, owing to which the stigma and anthers remained partially covered. It also sometimes happens that the pollen does not
45、reach full perfection. In this event there occurs a gradual lengthening of the pistil during the blooming period, until the stigmatic tip protrudes at the point of the keel. This remarkable appearance has also been observed in hybrids of Phaseolus and Lathyrus. The risk of false impregnation by fore
46、ign pollen is, however, a very slight one with Pisum, and is quite incapable of disturbing the general result. Among more than 10,000 plants which were carefully examined there were only a very few cases where an indubitable false impregnation had occurred. Since in the greenhouse such a case was ne
47、ver remarked, it may well be supposed that Bruchus pisi, and possibly also the described abnormalities in the floral structure, were to blame. 4 The Forms of the Hybrids第 7 页 共 60 页Experiments which in previous years were made with ornamental plants have already affording evidence that the hybrids,
48、as a rule, are not exactly intermediate between the parental species. With some of the more striking characters, those, for instance, which relate to the form and size of the leaves, the pubescence of the several parts, etc., the intermediate, indeed, is nearly always to be seen; in other cases, how
49、ever, one of the two parental characters is so preponderant that it is difficult, or quite impossible, to detect the other in the hybrid. This is precisely the case with the Pea hybrids. In the case of each of the 7 crosses the hybrid-character resembles that of one of the parental forms so closely that the other either escapes observation completely or cannot be detected with certainty. This circumstance is of great importance in the determination and classification of the forms under which the offspring of the hybrids appear. Henceforth in this paper those characters which ar