1、,甲,问题1 从甲地到乙地,可以乘火车,也可以乘汽车。一天中,火车有3班,汽车有2班。那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?,乙,3+2=5(种),一、分类计数原理,完成一件事,有n类办法. 在第1类办法中有m1种不同的方法,在第2类方法中有m2种不同的方法,在第n类方法中有mn种不同的方法,则完成这件事共有,2)首先要根据具体的问题确定一个分类标准,在分类标准下进行分类,然后对每类方法计数.,1)各类办法之间相互独立,都能独立的完成这件事,要计算方法种数,只需将各类方法数相加,因此分类计数原理又称加法原理,说明,N= m1+m2+ + mn 种不同的方法,例1 在填写
2、高考志愿表时,一名高中毕业生了解到A、B两所大学各有一些自己感兴趣的强项专业,具体情况如下:,如果这名同学只能选一个专业,那么他共有多少种选择呢?,解:这名同学在A大学中有5种专业选择,在B大学中有4种专业选择。,根据分类计数原理:这名同学可能的专业选择共有5+49种。,用前6个大写英文字母和19九个阿拉伯数字,以A1,A2,B1,B2,的方式给教室里的座位编号,总共能编出多少个不同的号码?,思考?,分析:由于前6个英文字母中的任意一个都能与9个数字中的任何一个组成一个号码,而且它们各个不同,因此共有6954个不同的号码。,字母 数字 得到的号码A,1 2 3 4 5 6 7 8 9,A1 A
3、2 A3 A4 A5 A6 A7 A8 A9,树形图,问题 2. 如图,由A村去B村的道路有3条,由B村去C村的道路有2条。从A村经B村去C村,共有多少种不同的走法?,分析: 从A村经 B村去C村有2步,第一步, 由A村去B村有3种方法,第二步, 由B村去C村有2种方法,所以 从A村经 B村去C村共有 3 2 = 6 种不同的方法。,二、分步计数原理,完成一件事,需要分成n个步骤。做第1步有m1种不同的方法,做第2步有m2种不同的方法, ,做第n步有mn种不同的方法,则完成这件事共有,2)首先要根据具体问题的特点确定一个分步的标准,然后对每步方法计数.,1)各个步骤相互依存,只有各个步骤都完成
4、了,这件事才算完成,将各个步骤的方法数相乘得到完成这件事的方法总数,又称乘法原理,说明,N= m1m2 mn种不同的方法,例2、设某班有男生30名,女生24名。现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?,例3、三明的部分电话号码是0598823,后面每个数字来自09这10个数,问可以产生多少个不同的电话号码?,变式: 若要求最后4个数字不重复,则又有多少种不同的电话号码?,0598823,分析:,分析:,例4、 书架上第1层放有4本不同的计算机书,第 2层放有3本不同的文艺书,第3层放有2本不同的体育杂志.,(2)从书架的第1、 2、 3层各取1本书,有多少种 不同取法
5、?,N43+29,N4 3224,(1)从书架上任取1本书,有多少种不同的取法?,例5、要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左右两边墙上的指定位置,问共有多少种不同的挂法?,课堂练习,1、在所有的两位数中,个位数字比十位数字大的两位数有多少个?,2、8本不同的书,任选3本分给3个同学,每人1本,有多少种不同的分法? 3、将4封信投入3个不同的邮筒,有多少种不同的投法? 4、已知 则方程 可表示不同的圆的个数有多少?,联系,区别一,完成一件事情共有n类 办法,关键词是“分类”,完成一件事情,共分n个 步骤,关键词是“分步”,区别二,每类办法都能独立完成 这件事情。,每一步得到的只是中间
6、结果, 任何一步都不能能独立完成 这件事情,缺少任何一步也 不能完成这件事情,只有每 个步骤完成了,才能完成这 件事情。,分类计数原理和分步计数原理,回答的都是关于完成一件事情的不同方法的种数的问题。,区别三,各类办法是互斥的、 并列的、独立的,各步之间是相关联的,分类计数与分步计数原理的区别和联系:,如图,从甲地到乙地有2条路,从乙地到丁地有3条路;从甲地到丙地有4条路可以走,从丙地到丁地有2条路。从甲地到丁地共有多少种不同地走法?,课堂练习,N1=23=6,N2=42=8,N= N1+N2 =14,2.如图,该电路,从A到B共有多少条不同的线路可通电?,A,B,解: 从总体上看由A到B的通
7、电线路可分三类,第一类, m1 = 3 条第二类, m2 = 1 条第三类, m3 = 22 = 4, 条所以, 根据分类原理, 从A到B共有N = 3 + 1 + 4 = 8 条不同的线路可通电。,在解题有时既要分类又要分步。,3. 四名研究生各从A、B、 C三位教授中选一位作自己的导师,共有_种选法;三名教授各从四名研究生中选一位作自己的学生,共有_种选法。,2. 在120共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种?,答.:(109+109)/2=90(种).,43,1. 某中学的一幢5层教学楼共有3处楼梯口,问从1楼到5楼共有多少种不同的走法?,答: 3333=34=81(种),练 习,34,4、已知二次函数 若则可以得到多少个不同的二次函数?其中图象过原点的二次函数有多少个?图象过原点且顶点在第一象限的二次函数又有多少个?,