现 在我们可以使用 计算器快速地得到某一个角的三角函数值。以 前人们是依靠三角函数表来 查用不同角度的三 角函数值的。公元 150 年左右, 古希腊天文学家托勒密在继承前人 工作成果的基础上,加以整理和发展,汇编成天文集一书,并附了一张从 0到 90每 差半度各角的正弦表,这就是世 界上第一张正弦函数表。托勒密造表的精确度是很高的。例如,他所求得的 1的正弦数值是 0.0087268,你可以在计算器上试一试,看看计算器上显示的 sin1的值, 看看误差约是多少。中国唐代学者一行在编制的大衍历中, 所立“九服晷影”是关 于不同地理纬度处晷影、漏刻长度的表格算法,其中用到了与正切表等价的影长数表,可视为最早的正切表。公元 920 年左右,阿拉伯学者阿尔巴坦尼(al-B attani,约 858929)根据影长与太阳仰角之间的关系,编制了 090每隔 1时12 尺竿子的影长表,这实际上是一 个 12cot 的数表。另一位阿拉伯学者阿布威 发(Abul-Waha,940 998)在 980 年左右编成了正切和余切 函数表,每隔 15和 10给出 一个值。他还首次引进了正割和余割函数。来源:来源:附件 1:律师事务所反盗版维权声明来源:附件 2:独家资源交换签约学校名录(放大查看)学校名录参见:http:/ /wxt/list.aspx?ClassID=3060来源:来源: