1、数学实验报告实验名称 线性代数相关运算 学 院 计算机与通信工程学院 专业班级 计算机 1201 姓 名 郭耀聪 学 号 41255025 2014年 5 月一、 【实验目的】掌握 Matlab 关于运算的基本知识。学会使用 matlab 求矩阵的转置,行列式,特征值,特征向量以及求解简单的线性非线性方程组。在高等数学的运算中,学会用矩形法,梯形法,辛普生公式求解积分。二、 【实验任务】P114: 12,14 p115: 21 (1) (2) p167: 17 (2), 18 三、 【实验程序】12、14、21(1)21(2)17(2)18、四、 【实验结果】12、14、A 的特征多项式为 x
2、3-6*x2+9*x-4;全部的特征值为 1,1,4;特征向量矩阵V 的列向量分别对应特征值 1,1,4 所对应的特征向量。21(1) 、系数矩阵的秩为 3,小于未知数个数 4.所以有无穷多解,原方程对应的同解方程组为X1 = 0.56X4X2=0.2X4X3=0.12X4取 X4=1,得基础解析$= 0.560.20.121所以方程组的通解为X1 0.56X2 = k 0.2X3 0.12X4 1其中 k 为任意实数。21(2)可以看出增广矩阵的秩为 2,等于系数矩阵的秩,而小于未知量的个数 4,所以方程组有无穷多个解,原方程组的同解方程为:X1=X2+X4+1/2;X3=2X4+1/2可以
3、找到其中一个特解1/2$*= 01/20再求解对应的齐次线性方程组 X1=X2+X4,可以的到一个基础解系X3=2X4$1= 1 $2= 11 00 20 1因此,次方程组的通解为:X1 1 1 1/2X2 = c1 1 + c2 0 + 0 ,(c1,c2R)X3 0 2 1/2X4 0 1 017(2)18、五、 【实验总结】对 matlab 中的有关线性代数和高等数学运算掌握,尤其是输入函数指令求矩阵的转置,秩,行列式以及特征多项式要重点掌握,在高数运算中的积分运算还是要掌握牢固。另外,在用三种方法求积分以及把积分结果和所求数值进行比较时,要注意下标,更要注意分号的取舍。(英文版 ) T
4、wo regulations promulgated for implementation is in the party in power for a long time and the rule of law conditions, the implementation of comprehensive strictly strategic plan, implementation in accordance with the rules and discipline to manage the party, strengthen inner-party supervision of ma
5、jor initiatives. The two regulations supporting each other, the adhere to a positive advocate, focusing on morality is of Party members and Party leading cadres can see, enough to get a high standard; around the party discipline, disciplinary ruler requirements, listed as “negative list, focusing on
6、 vertical gauge, draw the party organizations and Party members do not touch the“ bottom line “. Here, the main from four square face two party rules of interpretation: the first part introduces two party Revised regulations the necessity and the revision process; the second part is the interpretation of the two fundamental principles of the revision of laws and regulations in the party; the third part introduces two party regulations modified the main changes and needs to grasp several key problems; the fourth part on how to grasp the implementation of the two