收藏 分享(赏)

高中文科数学公式大全(完美).doc

上传人:liyang3100 文档编号:1742247 上传时间:2018-08-21 格式:DOC 页数:6 大小:474.60KB
下载 相关 举报
高中文科数学公式大全(完美).doc_第1页
第1页 / 共6页
高中文科数学公式大全(完美).doc_第2页
第2页 / 共6页
高中文科数学公式大全(完美).doc_第3页
第3页 / 共6页
高中文科数学公式大全(完美).doc_第4页
第4页 / 共6页
高中文科数学公式大全(完美).doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、第 1 页(共 6 页)高三文科数学公式及知识点一、函数1、函数的单调性(1)设 那么212,xbax、上是增函数;,)(0)(bafff 在上是减函数.1在(2)设函数 在某个区间内可导,若 ,则 为增函数;若 ,则 为y0)(xf)(xf 0)(xf)(xf减函数.2、函数的奇偶性对于定义域内任意的 ,都有 ,则 是偶函数;x)(xff)(f对于定义域内任意的 ,都有 ,则 是奇函数。奇函数的图象关于原点对称,偶函数的图象关于 y 轴对称。3、函数 在点 处的导数的几何意义)(xfy0函数 在点 处的导数是曲线 在 处的切线的斜率 ,相应的切线)(xf)(,0xfP)(0xf方程是 .)0

2、xf4、几种常见函数的导数 ; ; ; ;C1)(nnxxcos)(sinxsin)( ; ; ;axl)( xe aaln1lg 1l二 导数5、导数的运算法则(1) . (2) . (3) .()uv()uv2()(0)uv6、会用导数求单调区间、极值、最值 7、求函数 的极值的方法是:解方程 当 时:yfx0fx0fx(1) 如果在 附近的左侧 ,右侧 ,那么 是极大值;00f(2) 如果在 附近的左侧 ,右侧 ,那么 是极小值xxfx0fx第 2 页(共 6 页)3、三角函数、三角变换8、同角三角函数的基本关系式 , = .22sinco1tancosi10、和角与差角公式;i()si

3、in;.tantan1t11、二倍角公式 .si2icos.2222coincos1sin.tatan1公式变形: ;2cos1sin,2co1sin2,c2212、三角函数的周期函数 , ,xR 的周期 ;i()yx()yxT函数 , 的周期 .tan,2kZ13、 函数 的周期、最值、单调区间、图象变换si()14、辅助角公式其中)sin(cossin2xbaxbay abtn四、解三角形15、正弦定理 .2sinisinRABC16、余弦定理;22coabA;ca.s17、三角形面积公式.11sinisin22SbCcaB18、三角形内角和定理 在ABC 中,有 ()ABCA第 3 页(

4、共 6 页)5、 平面向量19. 与 的数量积 (或内积)abcos|20、平面向量的坐标运算(1)设 A ,B ,则 .1(,)xy2()21(,)ABOxy(2)设 = , = ,则 = .abxyba1(3)设 = ,则)(221、两向量的夹角公式设 = , = ,且 ,则a1()xyb2(,)y0b21cos yx22、向量的平行与垂直 .ba/a20.)0(b12六、数列23、数列的通项公式与前 n 项的和的关系1,2nnsa24、等差数列的通项公式;*11()()nadanN25、等差数列其前 n 项和公式为1()2ns1()2d26、等比数列的通项公式;1*()nnaqN27、等

5、比数列前 n 项的和公式为或 .1(),nsaq1,nnaqs七、不等式第 4 页(共 6 页)28、已知 都是正数,则有 ,当 时等号成立。yx, xy2八、解析几何29、直线的五种方程 (1)点斜式 (直线 过点 ,且斜率为 )11)ykxl1(,)Pxyk(2)斜截式 (b 为直线 在 y 轴上的截距).b(3)两点式 ( )( 、 ( ).212121,2,12x(4)截距式 ( 分别为直线的横、纵截距, )xyab、 0ab、(5)一般式 (其中 A、B 不同时为 0).0ABC30、两条直线的平行和垂直 若 ,11:lykx22:lykxb ;2|, .112l31、平面两点间的距

6、离公式,A ,B .,ABd21()()xy1(,)xy2(,)32、点到直线的距离 (点 ,直线 : ).02|C0)Pxyl0xyC33、 圆的三种方程(1)圆的标准方程 .22abr(2)圆的一般方程 ( 0).xyDEF24EF.34、直线与圆的位置关系直线 与圆 的位置关系有三种 :0CByAx 22)()(ry;交rd;. 弦长=交 2dr其中 .2BAbad35、椭圆、双曲线、抛物线的图形、定义、标准方程、几何性质椭圆: , ,离心率 ,21(0)xyab22bca1ace双曲线: (a0,b0), ,离心率 ,渐近线方程是 .2 xaby抛物线: ,焦点 ,准线 。抛物线上的点

7、到焦点距离等于它到准线的距离 .pxy)(2px36、双曲线的方程与渐近线方程的关系第 5 页(共 6 页)(1)若双曲线方程为 渐近线方程: .12byax20xyabxab(2)若渐近线方程为 双曲线可设为 .0yx 2y(3)若双曲线与 有公共渐近线,可设为 ( ,焦点在 x 轴上,12byax 2bax0,焦点在 y 轴上).037、抛物线 的焦半径公式 px2抛物线 焦半径 .(抛物线上的点到焦点距离等于它到准线的距离。 )(0)2|0pxPF38、过抛物线焦点的弦长 .pxAB211九、立体几何 39、证明直线与直线平行的方法(1)三角形中位线 (2)平行四边形(一组对边平行且相等

8、)40、证明直线与平面平行的方法(1)直线与平面平行的判定定理(证平面外一条直线与平面内的一条直线平行)(2)先证面面平行41、证明平面与平面平行的方法平面与平面平行的判定定理(一个平面内的两条相交直线分别与另一平面平行)42、证明直线与直线垂直的方法转化为证明直线与平面垂直43、证明直线与平面垂直的方法(1)直线与平面垂直的判定定理(直线与平面内两条相交直线垂直)(2)平面与平面垂直的性质定理(两个平面垂直,一个平面内垂直交线的直线垂直另一个平面)44、证明平面与平面垂直的方法平面与平面垂直的判定定理(一个平面内有一条直线与另一个平面垂直)45、柱体、椎体、球体的侧面积、表面积、体积计算公式

9、圆柱侧面积= ,表面积=rl2rl圆椎侧面积= ,表面积=( 是柱体的底面积、 是柱体的高).13VSh柱 体 h( 是锥体的底面积、 是锥体的高).锥 体球的半径是 ,则其体积 ,其表面积 R34VR24SR46、异面直线所成角、直线与平面所成角、二面角的平面角的定义及计算47、点到平面距离的计算(定义法、等体积法)48、直棱柱、正棱柱、长方体、正方体的性质:侧棱平行且相等,与底面垂直。正棱锥的性质:侧棱相等,顶点在底面的射影是底面正多边形的中心。十、概率统计49、平均数、方差、标准差的计算平均数: 方差:nxx21 )()()(12222 xxxns n第 6 页(共 6 页)标准差: )()()(1222xxxns n50、回归直线方程 ,其中 .yabx1122niiii ni iiyyxxayb51、独立性检验 )()(22 dbcadnK52、古典概型的计算(必须要用列举法、列表法、树状图的方法把所有基本事件表示出来,不重复、不遗漏)十一、复数53、复数的除法运算.2)()()(dciabadicbadic 54、复数 的模 = = .z|z|i

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报