1、第三章 概率的进一步认识 3.1 用树状图或表格求概率 第1课时 画树状图法和列表法,小明和小凡一起做游戏。在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一个球,摸到红球小明获胜,摸到白球小凡获胜。 (1)这个游戏对双方公平吗? (2)如果是你,你会设计一个什么游戏活动判断胜负?,小明、小凡和小颖都想去看周末电影,但只有一张电影票。三人决定一起做游戏,谁获胜谁就去看电影。游戏规则如下:连续抛掷两枚均匀的硬币,如果两枚正面朝上,则小明获胜;如果两枚反面朝上,则小颖获胜;如果一枚正面朝上、一枚反面朝上,小凡获胜。 你认为这个游戏公平吗?,如果不公平,猜猜谁获胜的可能性更大?,(
2、1)每人抛掷硬币20次,并记录每次试验的结果,根据记录填写下面的表格:,(2)5个同学为一个小组,依次累计各组的试验数据,相应得到试验100次、200次、300次、400次、500次时出现各种结果的频率,填写下表,并绘制成相应的折现统计图。,学.科.网,(3)由上面的数据,请你分别估计“两枚正面朝上”“两枚反面朝上”“一枚正面朝上、一枚反面朝上”这三个事件的概率。由此,你认为这个游戏公平吗?,想想,我们刚才都经历了哪些过程?你有什么体会?,活动体会:从上面的试验中我们发现,试验次数较大时,试验频率基本稳定,而且在一般情况下,“一枚正面朝上。一枚反面朝上”发生的概率大于其他两个事件发生的概率。所
3、以,这个游戏不公平,它对小凡比较有利。,思考:在上面抛掷硬币试验中, (1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样? (2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样? (3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生可能性是否一样?如果第一枚硬币反面朝上呢?,由于硬币是均匀的,因此抛掷第一枚硬币出现“正面朝上”和“反面朝上”的概率相同。无论抛掷第一枚硬币出现怎样的结果,抛掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率也是相同的。所以,抛掷两枚均匀的硬币,出现的(正,正)(正,反)(反,正)(反,反)四种情况是等可能的。,因此,我们可
4、以用树状图或表格表示所有可能出现的结果。,学习目标:学会利用树状图和列表法计算涉及两步试验的随机事件发生的概率。,利用树状图或表格,我们可以不重复,不遗留地列出所有可能的结果,从而比较方便地求出某些事件发生的概率。,1 .随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率是多少?,总共有4种结果,每种结果出现的可能性相同,而至少有一次正面朝上的结果有3种:(正,正),(正,反),(反,正),因此至少有一次正面朝上的概率是3/4.,开始,正,反,正,反,正,反,(正,正),(正,反),(反,正),(反,反),请你再用列表的方法解答本题.,学.科.网,一个盒子中装有一个红球、一个白球。这些球除颜色
5、外都相同,从中随机地摸出一个球,记下颜色后放回,再从中随机摸出一个球。求: (1)两次都摸到红球的概率; (2)两次摸到不同颜色球的概率;,1、本节课你有哪些收获?有何感想?2、用列表法求概率时应注意什么情况?,用列表法求随机事件发生的理论概率 (也可借用树状图分析),用列表法求概率时应注意各种情况发生 的可能性务必相同,(探究)一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中一次摸出2个球,2个球都是红球的可能性是( )A、 B、 C、 D、,C,在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是,谢谢!,