收藏 分享(赏)

几类高阶差分系统周期解的存在性.doc

上传人:cjc2202537 文档编号:1520726 上传时间:2018-07-24 格式:DOC 页数:40 大小:71.99KB
下载 相关 举报
几类高阶差分系统周期解的存在性.doc_第1页
第1页 / 共40页
几类高阶差分系统周期解的存在性.doc_第2页
第2页 / 共40页
几类高阶差分系统周期解的存在性.doc_第3页
第3页 / 共40页
几类高阶差分系统周期解的存在性.doc_第4页
第4页 / 共40页
几类高阶差分系统周期解的存在性.doc_第5页
第5页 / 共40页
点击查看更多>>
资源描述

1、应用数学专业毕业论文 精品论文 几类高阶差分系统周期解的存在性关键词:高阶差分系统 周期解 Morse 理论 环绕定理 山路引理摘要:微分方程、差分方程作为现代数学的一个重要分支,广泛应用于计算机科学、经济学、神经网络、生态学及控制论等学科领域中,因此对微分方程、差分方程解的性态的研究不仅有着重要的理论意义,而且具有重要的实用价值.几十年来,许多学者对微分方程周期解的存在性与多重性应用不同的方法进行了深入广泛的研究,这些方法主要有临界点理论(包括极小极大理论、几何指标理论与 Morse 理论)、不动点理论、重合度理论、Kaplan-Yorke 藕合系统法等.在这些方法中,临界点理论已成为处理这

2、类问题的强有力的工具.但是应用临界点理论研究差分方程周期解的存在性的文献很少,其主要原因在于难以找到适当的变分结构.本博士论文应用临界点理论研究了几类高阶差分系统的周期解的存在性和一类椭圆系统的解的存在性,得到了一系列全新的结果,主要内容如下: 首先,简要介绍了变分法的历史,回顾了与所研究问题相关的椭圆方程、哈密尔顿系统的历史背景与发展现状,并对本文的工作进行了简要的陈述. 其次,构建了几类新的高阶差分系统(或方程)模型,并通过构建恰当的变分结构,将两类高阶差分系统(或方程)的周期解和一类椭圆系统的解的存在性问题转化为适当函数空间上对应泛函的临界点的存在性问题,拓展了原有的二阶差分方程(或系统

3、)模型. 在第二章中,我们讨论了一类高阶差分系统. 首先,利用 Morse 理论结合临界群的计算等方法研究了高阶差分系统在非线性项是渐近线性的和超线性的两种情形,得出以下结论:当非线性项在无穷远处是渐近线性时,如果变分泛函在无穷远处的 Morse 指标和原点处的 Morse 指标不同,则系统在共振和非共振两种状态下都存在非平凡周期解.当非线性项在无穷远处是超线性时,系统至少存在三个不同的周期解. 然后,分别利用环绕定理、对称山路引理得到了该高阶差分系统存在多个和无穷多个非平凡周期解的结论,部分结果推广了已有文献的结论.再利用 Morse 理论结合 Lyapunov-schmidt 约化方法、三

4、临界点定理研究该高阶差分系统,将原有的对微分方程的研究方法推广到差分方程,并获得了该高阶差分系统多个和无穷多个非平凡周期解的存在条件. 在第三章中,我们利用环绕定理研究一类高阶泛函差分方程的周期解的存在性,得到了该方程至少存在一个非平凡周期解的若干充分条件. 在第四章中,我们考虑一类高阶差分方程.在非线性项是共振的情形,我们利用临界点理论中的局部环绕及无穷远处的角条件获得了该高阶差分方程多个非平凡周期解的存在条件. 在第五章中,我们结合畴数理论,利用推广的山路引理研究了一种椭圆系统的解的存在性,所得结果推广了某些文献的结论.正文内容微分方程、差分方程作为现代数学的一个重要分支,广泛应用于计算机

5、科学、经济学、神经网络、生态学及控制论等学科领域中,因此对微分方程、差分方程解的性态的研究不仅有着重要的理论意义,而且具有重要的实用价值.几十年来,许多学者对微分方程周期解的存在性与多重性应用不同的方法进行了深入广泛的研究,这些方法主要有临界点理论(包括极小极大理论、几何指标理论与 Morse 理论)、不动点理论、重合度理论、Kaplan-Yorke 藕合系统法等.在这些方法中,临界点理论已成为处理这类问题的强有力的工具.但是应用临界点理论研究差分方程周期解的存在性的文献很少,其主要原因在于难以找到适当的变分结构.本博士论文应用临界点理论研究了几类高阶差分系统的周期解的存在性和一类椭圆系统的解

6、的存在性,得到了一系列全新的结果,主要内容如下:首先,简要介绍了变分法的历史,回顾了与所研究问题相关的椭圆方程、哈密尔顿系统的历史背景与发展现状,并对本文的工作进行了简要的陈述. 其次,构建了几类新的高阶差分系统(或方程)模型,并通过构建恰当的变分结构,将两类高阶差分系统(或方程)的周期解和一类椭圆系统的解的存在性问题转化为适当函数空间上对应泛函的临界点的存在性问题,拓展了原有的二阶差分方程(或系统)模型. 在第二章中,我们讨论了一类高阶差分系统. 首先,利用 Morse 理论结合临界群的计算等方法研究了高阶差分系统在非线性项是渐近线性的和超线性的两种情形,得出以下结论:当非线性项在无穷远处是

7、渐近线性时,如果变分泛函在无穷远处的 Morse 指标和原点处的 Morse 指标不同,则系统在共振和非共振两种状态下都存在非平凡周期解.当非线性项在无穷远处是超线性时,系统至少存在三个不同的周期解. 然后,分别利用环绕定理、对称山路引理得到了该高阶差分系统存在多个和无穷多个非平凡周期解的结论,部分结果推广了已有文献的结论.再利用 Morse 理论结合 Lyapunov-schmidt 约化方法、三临界点定理研究该高阶差分系统,将原有的对微分方程的研究方法推广到差分方程,并获得了该高阶差分系统多个和无穷多个非平凡周期解的存在条件. 在第三章中,我们利用环绕定理研究一类高阶泛函差分方程的周期解的

8、存在性,得到了该方程至少存在一个非平凡周期解的若干充分条件. 在第四章中,我们考虑一类高阶差分方程.在非线性项是共振的情形,我们利用临界点理论中的局部环绕及无穷远处的角条件获得了该高阶差分方程多个非平凡周期解的存在条件. 在第五章中,我们结合畴数理论,利用推广的山路引理研究了一种椭圆系统的解的存在性,所得结果推广了某些文献的结论.微分方程、差分方程作为现代数学的一个重要分支,广泛应用于计算机科学、经济学、神经网络、生态学及控制论等学科领域中,因此对微分方程、差分方程解的性态的研究不仅有着重要的理论意义,而且具有重要的实用价值.几十年来,许多学者对微分方程周期解的存在性与多重性应用不同的方法进行

9、了深入广泛的研究,这些方法主要有临界点理论(包括极小极大理论、几何指标理论与Morse 理论)、不动点理论、重合度理论、Kaplan-Yorke 藕合系统法等.在这些方法中,临界点理论已成为处理这类问题的强有力的工具.但是应用临界点理论研究差分方程周期解的存在性的文献很少,其主要原因在于难以找到适当的变分结构.本博士论文应用临界点理论研究了几类高阶差分系统的周期解的存在性和一类椭圆系统的解的存在性,得到了一系列全新的结果,主要内容如下: 首先,简要介绍了变分法的历史,回顾了与所研究问题相关的椭圆方程、哈密尔顿系统的历史背景与发展现状,并对本文的工作进行了简要的陈述. 其次,构建了几类新的高阶差

10、分系统(或方程)模型,并通过构建恰当的变分结构,将两类高阶差分系统(或方程)的周期解和一类椭圆系统的解的存在性问题转化为适当函数空间上对应泛函的临界点的存在性问题,拓展了原有的二阶差分方程(或系统)模型. 在第二章中,我们讨论了一类高阶差分系统. 首先,利用Morse 理论结合临界群的计算等方法研究了高阶差分系统在非线性项是渐近线性的和超线性的两种情形,得出以下结论:当非线性项在无穷远处是渐近线性时,如果变分泛函在无穷远处的 Morse 指标和原点处的 Morse 指标不同,则系统在共振和非共振两种状态下都存在非平凡周期解.当非线性项在无穷远处是超线性时,系统至少存在三个不同的周期解. 然后,

11、分别利用环绕定理、对称山路引理得到了该高阶差分系统存在多个和无穷多个非平凡周期解的结论,部分结果推广了已有文献的结论.再利用 Morse 理论结合 Lyapunov-schmidt 约化方法、三临界点定理研究该高阶差分系统,将原有的对微分方程的研究方法推广到差分方程,并获得了该高阶差分系统多个和无穷多个非平凡周期解的存在条件. 在第三章中,我们利用环绕定理研究一类高阶泛函差分方程的周期解的存在性,得到了该方程至少存在一个非平凡周期解的若干充分条件. 在第四章中,我们考虑一类高阶差分方程.在非线性项是共振的情形,我们利用临界点理论中的局部环绕及无穷远处的角条件获得了该高阶差分方程多个非平凡周期解

12、的存在条件. 在第五章中,我们结合畴数理论,利用推广的山路引理研究了一种椭圆系统的解的存在性,所得结果推广了某些文献的结论.微分方程、差分方程作为现代数学的一个重要分支,广泛应用于计算机科学、经济学、神经网络、生态学及控制论等学科领域中,因此对微分方程、差分方程解的性态的研究不仅有着重要的理论意义,而且具有重要的实用价值.几十年来,许多学者对微分方程周期解的存在性与多重性应用不同的方法进行了深入广泛的研究,这些方法主要有临界点理论(包括极小极大理论、几何指标理论与Morse 理论)、不动点理论、重合度理论、Kaplan-Yorke 藕合系统法等.在这些方法中,临界点理论已成为处理这类问题的强有

13、力的工具.但是应用临界点理论研究差分方程周期解的存在性的文献很少,其主要原因在于难以找到适当的变分结构.本博士论文应用临界点理论研究了几类高阶差分系统的周期解的存在性和一类椭圆系统的解的存在性,得到了一系列全新的结果,主要内容如下: 首先,简要介绍了变分法的历史,回顾了与所研究问题相关的椭圆方程、哈密尔顿系统的历史背景与发展现状,并对本文的工作进行了简要的陈述. 其次,构建了几类新的高阶差分系统(或方程)模型,并通过构建恰当的变分结构,将两类高阶差分系统(或方程)的周期解和一类椭圆系统的解的存在性问题转化为适当函数空间上对应泛函的临界点的存在性问题,拓展了原有的二阶差分方程(或系统)模型. 在

14、第二章中,我们讨论了一类高阶差分系统. 首先,利用Morse 理论结合临界群的计算等方法研究了高阶差分系统在非线性项是渐近线性的和超线性的两种情形,得出以下结论:当非线性项在无穷远处是渐近线性时,如果变分泛函在无穷远处的 Morse 指标和原点处的 Morse 指标不同,则系统在共振和非共振两种状态下都存在非平凡周期解.当非线性项在无穷远处是超线性时,系统至少存在三个不同的周期解. 然后,分别利用环绕定理、对称山路引理得到了该高阶差分系统存在多个和无穷多个非平凡周期解的结论,部分结果推广了已有文献的结论.再利用 Morse 理论结合 Lyapunov-schmidt 约化方法、三临界点定理研究

15、该高阶差分系统,将原有的对微分方程的研究方法推广到差分方程,并获得了该高阶差分系统多个和无穷多个非平凡周期解的存在条件. 在第三章中,我们利用环绕定理研究一类高阶泛函差分方程的周期解的存在性,得到了该方程至少存在一个非平凡周期解的若干充分条件. 在第四章中,我们考虑一类高阶差分方程.在非线性项是共振的情形,我们利用临界点理论中的局部环绕及无穷远处的角条件获得了该高阶差分方程多个非平凡周期解的存在条件. 在第五章中,我们结合畴数理论,利用推广的山路引理研究了一种椭圆系统的解的存在性,所得结果推广了某些文献的结论.微分方程、差分方程作为现代数学的一个重要分支,广泛应用于计算机科学、经济学、神经网络

16、、生态学及控制论等学科领域中,因此对微分方程、差分方程解的性态的研究不仅有着重要的理论意义,而且具有重要的实用价值.几十年来,许多学者对微分方程周期解的存在性与多重性应用不同的方法进行了深入广泛的研究,这些方法主要有临界点理论(包括极小极大理论、几何指标理论与Morse 理论)、不动点理论、重合度理论、Kaplan-Yorke 藕合系统法等.在这些方法中,临界点理论已成为处理这类问题的强有力的工具.但是应用临界点理论研究差分方程周期解的存在性的文献很少,其主要原因在于难以找到适当的变分结构.本博士论文应用临界点理论研究了几类高阶差分系统的周期解的存在性和一类椭圆系统的解的存在性,得到了一系列全

17、新的结果,主要内容如下: 首先,简要介绍了变分法的历史,回顾了与所研究问题相关的椭圆方程、哈密尔顿系统的历史背景与发展现状,并对本文的工作进行了简要的陈述. 其次,构建了几类新的高阶差分系统(或方程)模型,并通过构建恰当的变分结构,将两类高阶差分系统(或方程)的周期解和一类椭圆系统的解的存在性问题转化为适当函数空间上对应泛函的临界点的存在性问题,拓展了原有的二阶差分方程(或系统)模型. 在第二章中,我们讨论了一类高阶差分系统. 首先,利用Morse 理论结合临界群的计算等方法研究了高阶差分系统在非线性项是渐近线性的和超线性的两种情形,得出以下结论:当非线性项在无穷远处是渐近线性时,如果变分泛函

18、在无穷远处的 Morse 指标和原点处的 Morse 指标不同,则系统在共振和非共振两种状态下都存在非平凡周期解.当非线性项在无穷远处是超线性时,系统至少存在三个不同的周期解. 然后,分别利用环绕定理、对称山路引理得到了该高阶差分系统存在多个和无穷多个非平凡周期解的结论,部分结果推广了已有文献的结论.再利用 Morse 理论结合 Lyapunov-schmidt 约化方法、三临界点定理研究该高阶差分系统,将原有的对微分方程的研究方法推广到差分方程,并获得了该高阶差分系统多个和无穷多个非平凡周期解的存在条件. 在第三章中,我们利用环绕定理研究一类高阶泛函差分方程的周期解的存在性,得到了该方程至少

19、存在一个非平凡周期解的若干充分条件. 在第四章中,我们考虑一类高阶差分方程.在非线性项是共振的情形,我们利用临界点理论中的局部环绕及无穷远处的角条件获得了该高阶差分方程多个非平凡周期解的存在条件. 在第五章中,我们结合畴数理论,利用推广的山路引理研究了一种椭圆系统的解的存在性,所得结果推广了某些文献的结论.微分方程、差分方程作为现代数学的一个重要分支,广泛应用于计算机科学、经济学、神经网络、生态学及控制论等学科领域中,因此对微分方程、差分方程解的性态的研究不仅有着重要的理论意义,而且具有重要的实用价值.几十年来,许多学者对微分方程周期解的存在性与多重性应用不同的方法进行了深入广泛的研究,这些方

20、法主要有临界点理论(包括极小极大理论、几何指标理论与Morse 理论)、不动点理论、重合度理论、Kaplan-Yorke 藕合系统法等.在这些方法中,临界点理论已成为处理这类问题的强有力的工具.但是应用临界点理论研究差分方程周期解的存在性的文献很少,其主要原因在于难以找到适当的变分结构.本博士论文应用临界点理论研究了几类高阶差分系统的周期解的存在性和一类椭圆系统的解的存在性,得到了一系列全新的结果,主要内容如下: 首先,简要介绍了变分法的历史,回顾了与所研究问题相关的椭圆方程、哈密尔顿系统的历史背景与发展现状,并对本文的工作进行了简要的陈述. 其次,构建了几类新的高阶差分系统(或方程)模型,并

21、通过构建恰当的变分结构,将两类高阶差分系统(或方程)的周期解和一类椭圆系统的解的存在性问题转化为适当函数空间上对应泛函的临界点的存在性问题,拓展了原有的二阶差分方程(或系统)模型. 在第二章中,我们讨论了一类高阶差分系统. 首先,利用Morse 理论结合临界群的计算等方法研究了高阶差分系统在非线性项是渐近线性的和超线性的两种情形,得出以下结论:当非线性项在无穷远处是渐近线性时,如果变分泛函在无穷远处的 Morse 指标和原点处的 Morse 指标不同,则系统在共振和非共振两种状态下都存在非平凡周期解.当非线性项在无穷远处是超线性时,系统至少存在三个不同的周期解. 然后,分别利用环绕定理、对称山

22、路引理得到了该高阶差分系统存在多个和无穷多个非平凡周期解的结论,部分结果推广了已有文献的结论.再利用 Morse 理论结合 Lyapunov-schmidt 约化方法、三临界点定理研究该高阶差分系统,将原有的对微分方程的研究方法推广到差分方程,并获得了该高阶差分系统多个和无穷多个非平凡周期解的存在条件. 在第三章中,我们利用环绕定理研究一类高阶泛函差分方程的周期解的存在性,得到了该方程至少存在一个非平凡周期解的若干充分条件. 在第四章中,我们考虑一类高阶差分方程.在非线性项是共振的情形,我们利用临界点理论中的局部环绕及无穷远处的角条件获得了该高阶差分方程多个非平凡周期解的存在条件. 在第五章中

23、,我们结合畴数理论,利用推广的山路引理研究了一种椭圆系统的解的存在性,所得结果推广了某些文献的结论.微分方程、差分方程作为现代数学的一个重要分支,广泛应用于计算机科学、经济学、神经网络、生态学及控制论等学科领域中,因此对微分方程、差分方程解的性态的研究不仅有着重要的理论意义,而且具有重要的实用价值.几十年来,许多学者对微分方程周期解的存在性与多重性应用不同的方法进行了深入广泛的研究,这些方法主要有临界点理论(包括极小极大理论、几何指标理论与Morse 理论)、不动点理论、重合度理论、Kaplan-Yorke 藕合系统法等.在这些方法中,临界点理论已成为处理这类问题的强有力的工具.但是应用临界点

24、理论研究差分方程周期解的存在性的文献很少,其主要原因在于难以找到适当的变分结构.本博士论文应用临界点理论研究了几类高阶差分系统的周期解的存在性和一类椭圆系统的解的存在性,得到了一系列全新的结果,主要内容如下: 首先,简要介绍了变分法的历史,回顾了与所研究问题相关的椭圆方程、哈密尔顿系统的历史背景与发展现状,并对本文的工作进行了简要的陈述. 其次,构建了几类新的高阶差分系统(或方程)模型,并通过构建恰当的变分结构,将两类高阶差分系统(或方程)的周期解和一类椭圆系统的解的存在性问题转化为适当函数空间上对应泛函的临界点的存在性问题,拓展了原有的二阶差分方程(或系统)模型. 在第二章中,我们讨论了一类

25、高阶差分系统. 首先,利用Morse 理论结合临界群的计算等方法研究了高阶差分系统在非线性项是渐近线性的和超线性的两种情形,得出以下结论:当非线性项在无穷远处是渐近线性时,如果变分泛函在无穷远处的 Morse 指标和原点处的 Morse 指标不同,则系统在共振和非共振两种状态下都存在非平凡周期解.当非线性项在无穷远处是超线性时,系统至少存在三个不同的周期解. 然后,分别利用环绕定理、对称山路引理得到了该高阶差分系统存在多个和无穷多个非平凡周期解的结论,部分结果推广了已有文献的结论.再利用 Morse 理论结合 Lyapunov-schmidt 约化方法、三临界点定理研究该高阶差分系统,将原有的

26、对微分方程的研究方法推广到差分方程,并获得了该高阶差分系统多个和无穷多个非平凡周期解的存在条件. 在第三章中,我们利用环绕定理研究一类高阶泛函差分方程的周期解的存在性,得到了该方程至少存在一个非平凡周期解的若干充分条件. 在第四章中,我们考虑一类高阶差分方程.在非线性项是共振的情形,我们利用临界点理论中的局部环绕及无穷远处的角条件获得了该高阶差分方程多个非平凡周期解的存在条件. 在第五章中,我们结合畴数理论,利用推广的山路引理研究了一种椭圆系统的解的存在性,所得结果推广了某些文献的结论.微分方程、差分方程作为现代数学的一个重要分支,广泛应用于计算机科学、经济学、神经网络、生态学及控制论等学科领

27、域中,因此对微分方程、差分方程解的性态的研究不仅有着重要的理论意义,而且具有重要的实用价值.几十年来,许多学者对微分方程周期解的存在性与多重性应用不同的方法进行了深入广泛的研究,这些方法主要有临界点理论(包括极小极大理论、几何指标理论与Morse 理论)、不动点理论、重合度理论、Kaplan-Yorke 藕合系统法等.在这些方法中,临界点理论已成为处理这类问题的强有力的工具.但是应用临界点理论研究差分方程周期解的存在性的文献很少,其主要原因在于难以找到适当的变分结构.本博士论文应用临界点理论研究了几类高阶差分系统的周期解的存在性和一类椭圆系统的解的存在性,得到了一系列全新的结果,主要内容如下:

28、 首先,简要介绍了变分法的历史,回顾了与所研究问题相关的椭圆方程、哈密尔顿系统的历史背景与发展现状,并对本文的工作进行了简要的陈述. 其次,构建了几类新的高阶差分系统(或方程)模型,并通过构建恰当的变分结构,将两类高阶差分系统(或方程)的周期解和一类椭圆系统的解的存在性问题转化为适当函数空间上对应泛函的临界点的存在性问题,拓展了原有的二阶差分方程(或系统)模型. 在第二章中,我们讨论了一类高阶差分系统. 首先,利用Morse 理论结合临界群的计算等方法研究了高阶差分系统在非线性项是渐近线性的和超线性的两种情形,得出以下结论:当非线性项在无穷远处是渐近线性时,如果变分泛函在无穷远处的 Morse

29、 指标和原点处的 Morse 指标不同,则系统在共振和非共振两种状态下都存在非平凡周期解.当非线性项在无穷远处是超线性时,系统至少存在三个不同的周期解. 然后,分别利用环绕定理、对称山路引理得到了该高阶差分系统存在多个和无穷多个非平凡周期解的结论,部分结果推广了已有文献的结论.再利用 Morse 理论结合 Lyapunov-schmidt 约化方法、三临界点定理研究该高阶差分系统,将原有的对微分方程的研究方法推广到差分方程,并获得了该高阶差分系统多个和无穷多个非平凡周期解的存在条件. 在第三章中,我们利用环绕定理研究一类高阶泛函差分方程的周期解的存在性,得到了该方程至少存在一个非平凡周期解的若

30、干充分条件. 在第四章中,我们考虑一类高阶差分方程.在非线性项是共振的情形,我们利用临界点理论中的局部环绕及无穷远处的角条件获得了该高阶差分方程多个非平凡周期解的存在条件. 在第五章中,我们结合畴数理论,利用推广的山路引理研究了一种椭圆系统的解的存在性,所得结果推广了某些文献的结论.微分方程、差分方程作为现代数学的一个重要分支,广泛应用于计算机科学、经济学、神经网络、生态学及控制论等学科领域中,因此对微分方程、差分方程解的性态的研究不仅有着重要的理论意义,而且具有重要的实用价值.几十年来,许多学者对微分方程周期解的存在性与多重性应用不同的方法进行了深入广泛的研究,这些方法主要有临界点理论(包括

31、极小极大理论、几何指标理论与Morse 理论)、不动点理论、重合度理论、Kaplan-Yorke 藕合系统法等.在这些方法中,临界点理论已成为处理这类问题的强有力的工具.但是应用临界点理论研究差分方程周期解的存在性的文献很少,其主要原因在于难以找到适当的变分结构.本博士论文应用临界点理论研究了几类高阶差分系统的周期解的存在性和一类椭圆系统的解的存在性,得到了一系列全新的结果,主要内容如下: 首先,简要介绍了变分法的历史,回顾了与所研究问题相关的椭圆方程、哈密尔顿系统的历史背景与发展现状,并对本文的工作进行了简要的陈述. 其次,构建了几类新的高阶差分系统(或方程)模型,并通过构建恰当的变分结构,

32、将两类高阶差分系统(或方程)的周期解和一类椭圆系统的解的存在性问题转化为适当函数空间上对应泛函的临界点的存在性问题,拓展了原有的二阶差分方程(或系统)模型. 在第二章中,我们讨论了一类高阶差分系统. 首先,利用Morse 理论结合临界群的计算等方法研究了高阶差分系统在非线性项是渐近线性的和超线性的两种情形,得出以下结论:当非线性项在无穷远处是渐近线性时,如果变分泛函在无穷远处的 Morse 指标和原点处的 Morse 指标不同,则系统在共振和非共振两种状态下都存在非平凡周期解.当非线性项在无穷远处是超线性时,系统至少存在三个不同的周期解. 然后,分别利用环绕定理、对称山路引理得到了该高阶差分系

33、统存在多个和无穷多个非平凡周期解的结论,部分结果推广了已有文献的结论.再利用 Morse 理论结合 Lyapunov-schmidt 约化方法、三临界点定理研究该高阶差分系统,将原有的对微分方程的研究方法推广到差分方程,并获得了该高阶差分系统多个和无穷多个非平凡周期解的存在条件. 在第三章中,我们利用环绕定理研究一类高阶泛函差分方程的周期解的存在性,得到了该方程至少存在一个非平凡周期解的若干充分条件. 在第四章中,我们考虑一类高阶差分方程.在非线性项是共振的情形,我们利用临界点理论中的局部环绕及无穷远处的角条件获得了该高阶差分方程多个非平凡周期解的存在条件. 在第五章中,我们结合畴数理论,利用

34、推广的山路引理研究了一种椭圆系统的解的存在性,所得结果推广了某些文献的结论.微分方程、差分方程作为现代数学的一个重要分支,广泛应用于计算机科学、经济学、神经网络、生态学及控制论等学科领域中,因此对微分方程、差分方程解的性态的研究不仅有着重要的理论意义,而且具有重要的实用价值.几十年来,许多学者对微分方程周期解的存在性与多重性应用不同的方法进行了深入广泛的研究,这些方法主要有临界点理论(包括极小极大理论、几何指标理论与Morse 理论)、不动点理论、重合度理论、Kaplan-Yorke 藕合系统法等.在这些方法中,临界点理论已成为处理这类问题的强有力的工具.但是应用临界点理论研究差分方程周期解的

35、存在性的文献很少,其主要原因在于难以找到适当的变分结构.本博士论文应用临界点理论研究了几类高阶差分系统的周期解的存在性和一类椭圆系统的解的存在性,得到了一系列全新的结果,主要内容如下: 首先,简要介绍了变分法的历史,回顾了与所研究问题相关的椭圆方程、哈密尔顿系统的历史背景与发展现状,并对本文的工作进行了简要的陈述. 其次,构建了几类新的高阶差分系统(或方程)模型,并通过构建恰当的变分结构,将两类高阶差分系统(或方程)的周期解和一类椭圆系统的解的存在性问题转化为适当函数空间上对应泛函的临界点的存在性问题,拓展了原有的二阶差分方程(或系统)模型. 在第二章中,我们讨论了一类高阶差分系统. 首先,利

36、用Morse 理论结合临界群的计算等方法研究了高阶差分系统在非线性项是渐近线性的和超线性的两种情形,得出以下结论:当非线性项在无穷远处是渐近线性时,如果变分泛函在无穷远处的 Morse 指标和原点处的 Morse 指标不同,则系统在共振和非共振两种状态下都存在非平凡周期解.当非线性项在无穷远处是超线性时,系统至少存在三个不同的周期解. 然后,分别利用环绕定理、对称山路引理得到了该高阶差分系统存在多个和无穷多个非平凡周期解的结论,部分结果推广了已有文献的结论.再利用 Morse 理论结合 Lyapunov-schmidt 约化方法、三临界点定理研究该高阶差分系统,将原有的对微分方程的研究方法推广

37、到差分方程,并获得了该高阶差分系统多个和无穷多个非平凡周期解的存在条件. 在第三章中,我们利用环绕定理研究一类高阶泛函差分方程的周期解的存在性,得到了该方程至少存在一个非平凡周期解的若干充分条件. 在第四章中,我们考虑一类高阶差分方程.在非线性项是共振的情形,我们利用临界点理论中的局部环绕及无穷远处的角条件获得了该高阶差分方程多个非平凡周期解的存在条件. 在第五章中,我们结合畴数理论,利用推广的山路引理研究了一种椭圆系统的解的存在性,所得结果推广了某些文献的结论.微分方程、差分方程作为现代数学的一个重要分支,广泛应用于计算机科学、经济学、神经网络、生态学及控制论等学科领域中,因此对微分方程、差

38、分方程解的性态的研究不仅有着重要的理论意义,而且具有重要的实用价值.几十年来,许多学者对微分方程周期解的存在性与多重性应用不同的方法进行了深入广泛的研究,这些方法主要有临界点理论(包括极小极大理论、几何指标理论与Morse 理论)、不动点理论、重合度理论、Kaplan-Yorke 藕合系统法等.在这些方法中,临界点理论已成为处理这类问题的强有力的工具.但是应用临界点理论研究差分方程周期解的存在性的文献很少,其主要原因在于难以找到适当的变分结构.本博士论文应用临界点理论研究了几类高阶差分系统的周期解的存在性和一类椭圆系统的解的存在性,得到了一系列全新的结果,主要内容如下: 首先,简要介绍了变分法

39、的历史,回顾了与所研究问题相关的椭圆方程、哈密尔顿系统的历史背景与发展现状,并对本文的工作进行了简要的陈述. 其次,构建了几类新的高阶差分系统(或方程)模型,并通过构建恰当的变分结构,将两类高阶差分系统(或方程)的周期解和一类椭圆系统的解的存在性问题转化为适当函数空间上对应泛函的临界点的存在性问题,拓展了原有的二阶差分方程(或系统)模型. 在第二章中,我们讨论了一类高阶差分系统. 首先,利用Morse 理论结合临界群的计算等方法研究了高阶差分系统在非线性项是渐近线性的和超线性的两种情形,得出以下结论:当非线性项在无穷远处是渐近线性时,如果变分泛函在无穷远处的 Morse 指标和原点处的 Mor

40、se 指标不同,则系统在共振和非共振两种状态下都存在非平凡周期解.当非线性项在无穷远处是超线性时,系统至少存在三个不同的周期解. 然后,分别利用环绕定理、对称山路引理得到了该高阶差分系统存在多个和无穷多个非平凡周期解的结论,部分结果推广了已有文献的结论.再利用 Morse 理论结合 Lyapunov-schmidt 约化方法、三临界点定理研究该高阶差分系统,将原有的对微分方程的研究方法推广到差分方程,并获得了该高阶差分系统多个和无穷多个非平凡周期解的存在条件. 在第三章中,我们利用环绕定理研究一类高阶泛函差分方程的周期解的存在性,得到了该方程至少存在一个非平凡周期解的若干充分条件. 在第四章中

41、,我们考虑一类高阶差分方程.在非线性项是共振的情形,我们利用临界点理论中的局部环绕及无穷远处的角条件获得了该高阶差分方程多个非平凡周期解的存在条件. 在第五章中,我们结合畴数理论,利用推广的山路引理研究了一种椭圆系统的解的存在性,所得结果推广了某些文献的结论.特别提醒 :正文内容由 PDF 文件转码生成,如您电脑未有相应转换码,则无法显示正文内容,请您下载相应软件,下载地址为 http:/ 。如还不能显示,可以联系我 q q 1627550258 ,提供原格式文档。“垐垯櫃 换烫梯葺铑?endstreamendobj2x 滌?U 閩 AZ箾 FTP 鈦X 飼?狛P? 燚?琯嫼 b?袍*甒?颙嫯

42、?4)=r 宵?i?j 彺帖 B3 锝檡骹笪 yLrQ#?0 鯖 l 壛枒l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛渓?擗#?“?# 綫 G 刿#K 芿$?7. 耟?Wa 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 皗 E|?pDb 癳$Fb 癳$Fb癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$F?責鯻 0 橔 C,f 薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵秾腵薍秾腵%?秾腵薍秾腵薍

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 经营企划

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报