1、管理研究方法,三、管理研究分析方法,2,研究流程,观察:确认宽泛的研究范围,初步资料搜集:访谈、文献调查,问题界定:描述研究,理论框架:清楚辩识和归类变量,衍生假设,科学研究设计,资料搜集、分析与解释,推论:假设是否被验证?研究问题是否得到解答?,否,是,撰写报告,提出报告,做出管理决策,3,数据分析流程,资料审核资料编码数据录入数据清理,资料的录入与整理,变量集中和离散趋势的描述,描述统计,信度分析效度分析,信度和效度检验,实验控制检验,实验,调节效应检验中介效应检验,调节、中介效应的检验,T检验方差分析相关分析回归分析,假设检验常用的统计方法,实验?,否,是,4,管理研究分析方法,常用的统
2、计方法,因子分析(效度分析)和信度分析,描述性统计分析,资料的录入与整理,中介和调节效应的检验,研究报告,5,资料的录入与整理,资料的审核资料的编码数据录入数据清理,6,资料的录入与整理1资料的审核,指研究者对问卷进行初步的审阅,剔除错填、乱填和严重缺答的废卷。其目的是使得原始资料具有较好的准确性、完整性和真实性,从而为后续资料录入与统计分析打下良好的基础。资料的审核工作包含两方面的内容:一是检查问卷中的问题;二是重新向被试核实。 审核的方法实地审核:指审核工作和收集工作同步进行,边收集边审核,也叫收集审核。系统审核:指在收集资料后集中时间审核。多次审核:指对重要资料进行反复的各种形式的审核。
3、,7,资料的录入与整理2资料的编码,编码:对问卷中的每一个问题、每一个答案编定一个唯一的数字,并以此为依据对问卷进行数据分析。对于具有方向性的题项,编码时要特别注意它的方向性。即:反向题在数据分析之前应该反向计分。无回答(漏填)题项的编码使用系统默认值,以“.”表示。“不知道”答案的编码常为9、99或999。单选题的编码比较简单,应特别注意多选题(包括多项限选题、多项排序题、多项任选题)的编码。,8,例如:工作动机的测量问卷:基本信息: 性别:男 女 年龄_岁 非常不同意 不同意 无所谓 同意 非常同意我的工作非常有趣: 我并非整天都全神贯注于我的工作: 生活中没有工作将是乏味的: ,1男,0
4、女,以填答的实际年龄为准,该问题应反向计分,1 2 3 4 5,例:单选题的编码,无回答,9,例:多项限选、多项排序题项的编码,6、以下哪些为您的择偶条件(限选3项):(1)相貌 (2)文化水准 (3)气质风度 (4)志同道合(5)人品 (6)家庭条件 (7)个人收入 (8)其他,多项限选和多项排序式的编码:要求被试选几项或排序几项,就编几个码,在SPSS录入时就有多少列。,10,例:多选任选题项的编码,多项任选题可采用多重二分法进行编码。每个答案都编一个码,故有多少个选项,在SPSS中就有多少列。如果被试选择该答案则编码为1,被试未选择该答案则编码为0。,8、 你在选择商场购物时,关注以下哪
5、些因素: (可任选) (1)交通条件 (2)促销活动 (3)购物环境 (4)服务质量 (5)其它,11,资料的录入与整理3数据录入,安装SPSS软件:用户信息中输入自己的名字,在serial中输入“12345”选择个人安装在license codes中输入“30001359390”,点击update,再输入“30001374190”,再点击update程序安装完毕后,将安装盘中crack目录下的lservrc文件复制到安装目录下,12,资料的录入与整理3数据录入,先在SPSS中定义好变量,再录入数据!,13,例如:工作动机的测量问卷:基本信息: 性别:男 女 年龄_36_岁 非常不同意 不同意
6、 无所谓 同意 非常同意我的工作非常有趣: 我并非整天都全神贯注于我的工作: 生活中没有工作将是乏味的: ,1男,0女,以填答的实际年龄为准,1 2 3 4 5,例:数据录入,14,例:反向计分,操作方法:Transform Record into same variables在variables框中选入要反向计分的题项点“old and new values”。上例的转化方法为:在old value里输入1,new value里输入5,点Add;然后在在old value里输入2,new value里输入4,点Add.依此类推,直到所有的分值都在old new框里出现。,15,例:反向计分,
7、操作方法:Transform Record into same variables在variables框中选入要反向计分的题项点“old and new values”。上例的转化方法为:在old value里输入1,new value里输入5,点Add;然后在在old value里输入2,new value里输入4,点Add.依此类推,直到所有的分值都在old new框里出现。,反向计分后,原来的2变成了4,16,资料的录入与整理4数据清理,有效范围清理:当数据中的数字超出了数据编码范围时,则这个数字一定是错误的。逻辑一致性清理:依据问卷中的题项相互之间内在的逻辑联系,来检查前后数据之间的合
8、理性。数据质量抽查:尽管采取了上述两种方法对数据进行清理,但仍会有一些错误的数据无法查出来。采用随机抽样的方法,从全部样本的中抽取一部分样本与原始问卷进行比对。这就要求我们必须对原始问卷进行编号,通过问卷编号与数据样本的一一对应关系,找到原始问卷。用比对结果,来估计和评价全部数据的质量。,17,例:有效范围、逻辑一致性清理,例:1.您是否为独生子女? 是 否 (1=是;0=否)如果:在SPSS文件中出现了数字2,超出了有效范围,2.您有几个兄弟姐妹? 0个 1-2个 3个及以上,逻辑矛盾,用SPSS软件进行频数分析(frequencies) ,可以很快查到哪个题项超过有效范围。,如果一份问卷中
9、错答的题项不止一两处,则可考虑将这个样本的全部数据删除,作为废卷处理。,18,SPSS数据管理,频数分析Analyze Descriptive Statistics FrequenciesCompute:通过数学计算生成新变量例:计算两个班语文和数学的平均成绩Transform Compute在Target Variable中输入“平均成绩”,在Numeric Expression中输入数学表达式:语文成绩数学成绩/2。数学表达式的输入可以利用窗口左边列出的变量名称与窗口中间列出的软键盘输入。,学生成绩.sav,19,SPSS数据管理,学生成绩.sav,计算平均数: Transform Com
10、pute,20,SPSS数据管理,Recode: 对已有变量值重新编码Transform Recode Into Different Variables例:成绩变为成绩段 平均成绩 成绩段,点Change 定义Old and New Values: 左边窗口选6070,在右边窗口输入“及格”,并选“output variables are strings”,点Add;以此类推,输入:70.185良好;85.1分以上优秀 Continue OK,学生成绩.sav,21,SPSS数据管理,Recode: 对已有变量值重新编码Transform Recode Into Different Varia
11、bles例:成绩变为成绩段 平均成绩 成绩段,点Change 定义Old and New Values: 左边窗口选6070,在右边窗口输入“及格”,并选“output variables are strings”,点Add;以此类推,输入:70.185良好;85.1分以上优秀 Continue OK,学生成绩.sav,22,数据分析流程,资料审核资料编码数据录入数据清理,资料的录入与整理,变量集中和离散趋势的描述,描述统计,信度分析效度分析,信度和效度检验,实验控制检验,实验,调节效应检验中介效应检验,调节、中介效应的检验,T检验方差分析相关分析回归分析,假设检验常用的统计方法,实验?,否,
12、是,23,管理研究分析方法,常用的统计方法,因子分析(效度分析)和信度分析,描述性统计分析,资料的录入与整理,中介和调节效应的检验,研究报告,24,描述性统计分析,对样本数据的分析通常是从变量的描述统计分析入手的。通过变量的描述统计分析,能够掌握和了解样本数据的统计特征和总体分布形态,对于进一步数据分析,将起到重要的指导和参考作用。,数值计算,计算常见的描述统计量的值,通过数值来准确反映样本数据的统计特征。,图形绘制,绘制常见的统计图形,通过图形来直观展现数据的分布特点,比较数据分布的异同。,通常数值计算和图形绘制是混合使用的,两者相辅相成。,25,Frequencies:频数分析,描述统计数
13、据的总体分布特征;Descriptive:描述统计量,对单变量计算基本的描述统计量;Explore:探索性分析,考察数据中远离总体分布的边缘样本取值;考察变量与变量之间分布的差异性是否显著;Crosstabs:交叉列联表,讨论变量之间的频度关系以及各种测度的变量与变量之间的相对关系;Ratio:比率分析,对两变量间变量值比率变化的描述分析。,26,1. 频数分析( Frequencies ),频数分析统计的是每一组中观测点的个数,而不考虑其实际取值。 当某个变量的自然取值是局限在有限的几个数值中,频数分析统计该变量在各个取值点的个数分布情况; 如果某变量的取值在某范围内的连续值,则需要将其取值
14、区域划分为几个取值区间,频数分析统计的是该变量在各个取值区间中观测点个数的分布情况。,频数分析的一个基本功能就是编制频数分布表,27,1. 频数分析基本概念,频数(Frequency):变量值落在某个区间或某个取值点的个数。,百分比(Percent):各频数占总样本的百分比。,有效百分比(Valid Percent):各频数占有效样本数的百分比。,累积百分比(Cumulative Percent):各百分比值逐渐累加起来的结果,最终取值是100。,28,1. 频数分析常用图形,条形图Bar Chart,用宽度相同的条形的高度表示频数分布变化的图形。 适用于定序和定类变量分析。,饼图Pie Ch
15、art,用扇形的面积来表示频数分布变化的图形。 有利于研究事物内在结构组成等问题,适用与定序或定类变量。,直方图Histograms,用矩形的面积来表示频数分布变化的图形。 适用于定距或定比变量的分析。可以在直方图上附加正态分布曲线,以便于与正态分布进行比较。,29,频数分析SPSS操作,Analyze Descriptive Statistics Frequencies将“成绩段”或“平均成绩”选入右边窗口,点击 Charts 选择需要的Bar Chart(条形图), Pie Chart(饼图), Histograms(直方图)Chart Values,可以选择Frequencies或Per
16、centages点Continue,点OK,学生成绩.sav,30,频数分析SPSS操作,条形图,31,频数分析SPSS操作,饼图,32,频数分析SPSS操作,直方图,33,2. 描述统计( Descriptive ),通过频数分析把握数据的总体分布状况后,通常还需要对定距或定比测量的变量的分布特征进行更精确的刻画,需要通过描述统计来实现。,描述集中趋势的统计量,描述离散趋势的统计量,描述分布形态的统计量,34,描述统计量集中趋势统计量,用一个具体的统计量来反映一组数据的一般水平,或者说反映这组数据向该统计量集中的情况。平均数(Mean):总体各单位数值之和除以总体单位数目之商。中位数(Med
17、ian):把一组数据按值的大小顺序排列起来,处于中央位置的那个数值就叫中位数。众数(Mode):指在一组数据中出现次数最多的那个数的数值。求和(Sum):所有变量之和,反映变量总体水平。,35,描述统计量离散趋势统计量,离散量数,是表示一组数据变异程度或分散程度的量数。离散量数越大,表示数据分布范围越广,越不集中;反之,离散量数越小,表示数据分布范围越集中,变动程度越小。方差(Variance)与标准差(Standard Deviation)全距(Range):一组数据中最大值与最小值之差。四分位差(Interquartile Range):将一组数据按大小排列成序,然后将其四等分,去掉序列中
18、最高的四分之一和最低的四分之一,仅就中间的一半数值来测定序列的全距。异众比率(Variation Ratio):非众数的频数与全部样本数的比值离散系数(Coefficient of Variation):标准差与算术平均数的百分比值。,36,描述统计量分布形态统计量,偏度(Skewness):反映数据分布形态对称性的统计量。计算偏度系统能说明数据总体是否或近似于正态分布,从而确定能否进行统计推断或如何进行统计推断。,Skp= 0 时,数据呈严格的正态分布。Skp 0 时,分布呈正偏态。Skp0,说明数据的分布比标准正态分布更为陡峭,为尖峰(高狭峰)分布;峰度值0.05),则应接受假设H0,认为
19、样本的分布与指定的分布没有显著的差异。,42,利用SPSS进行定量的正态分布检验,Analyze Nonparametric Tests 1-Sample K-S ,把变量“语文成绩”选入“Test Variable List”框。在 “Test Distribution”框中使用默认选项正态分布。Nominal,正态分布,系统默认选项;Uniform,均匀分布;Poisson,泊松分布;Exponential,指数分布。点击OK。,43,利用SPSS进行定量的正态分布检验,Sig.=0.4360.05,因此接受零假设,即变量“语文成绩”与正态分布不存在显著性差异,也就是说变量“语文成绩”是呈
20、正态分布的。,44,3. 探索性分析( Explore ),在收集数据的过程中,由于测量工具产生的系统误差和由于人工操作产生的偶然误差往往导致可能出现一些偏离正常值的数据。对数据进行探索性分析,主要是对数据进行三方面的考察:,考察数据的真实性,偏离数据主体分布太远的数据可能是有问题的数据。数据考察可以找出这些非正常值和极端值,通过对这些数据的分析,判断其正确性,以便决定在以后的统计分析过程中是否将其保留下来。,考察数据的分布特性,数据的分布是否满足标准分布,这在很多统计分析过程中都是需要明确的。,考察变量之间数据相互关系,变量与变量之间的相关性考察、方差齐性的考察,都是一些统计分析过程所必须实
21、现了解的。,45,(1)通过茎叶图(Stem-Leaf Plots)描述频度分布,语文成绩 Stem-and-Leaf Plot Frequency Stem & Leaf 2.00 6 . 11 4.00 6 . 7799 4.00 7 . 2234 10.00 7 . 6677789999 8.00 8 . 22233444 9.00 8 . 556666778 3.00 9 . 000 Stem width: 10 Each leaf: 1 case(s),第一列表示频数,表示样本的个数; 第二列表示茎叶图的茎,表达整数部分,其表达的具体值与茎宽有关; 第三列表示叶子,每片叶子代表小数部
22、分,其代表的具体值也与茎宽有关。 “10.00 7 . 6677789999”表示分数在76的样本有2个,分数在77的样本有3个,分数在78的样本有1个,分数在79的样本有4个。,学生成绩.sav,46,(2)通过箱型图(Boxplots)描述数据分布,显示了变量数据的中位数,25%百分位数和75%百分位数,并给出偏离总体分布的奇异样本和极端样本。,箱图主体:由小于75%百分位数到大于25%百分位数的样本组成,显然主体中样本数占50%。 中位数:箱主体中有一条粗横线代表变量的中位数。 奇异值:如果某个数据距离箱主体边缘的距离超过箱主体高度的1.5倍,则称该数据为奇异值,在箱型图中,奇异值用“”
23、表示。,极端值:如果某个数据距离箱主体边缘的距离超过箱主体高度的3倍,则称该数据为极端值,在箱图中,极端值用“*”表示。,学生成绩.sav,47,数据分析流程,资料审核资料编码数据录入数据清理,资料的录入与整理,变量集中和离散趋势的描述,描述统计,信度分析效度分析,信度和效度检验,实验控制检验,实验,调节效应检验中介效应检验,调节、中介效应的检验,T检验方差分析相关分析回归分析,假设检验,实验?,否,是,48,管理研究分析方法,常用的统计方法,因子分析(效度分析)和信度分析,描述性统计分析,资料的录入与整理,中介和调节效应的检验,研究报告,49,效度的类型,聚敛效度和区别效度可以通过SPSS因
24、子分析粗略地检验。若要精确检验,需要使用结构方程模型的验证性因子分析过程。,50,因子分析,因子分析的基本思想:根据相关性大小把原始题项分组,使得同组内的题项之间相关性较高,不同组题项间的相关性较低,从而以较少的公因子来表示原先的资料结果,而又能保留住原有资料所提供的大部分信息。,如:在调查师范生应具有的素质中,通过因子分析从20个题项中概括出:师德、专业知识、教学实践性知识、语言表达能力和心理素质5个因子。,51,因子分析的基本步骤,第一步,确定因子分析的前提条件,因子分析就是从众多的原始题项中综合出少数几个具有代表性的因子,这就要求题项之间具有较强的相关性。如果原始题项之间不存在较强的相关
25、关系,则无法找出其中的公因子。,两个指标反映了因子分析的前提条件是否满足:(1)Bartlett的球型检验(Bartlett test of sphericity),检验题项间相关系数是否显著(sig.是否小于0.05),显著则适合做因子分析。由于球型检验容易受到样本数的影响,通常在样本增加时很容易显示显著的结果。(2) KMO(Kaiser-Meyer-0lkin), 用于比较题项间简单相关和偏相关系数。KMO取值在0与1之间。按是否适合做因子分析,分别为:KMO0.9,非常适合;0.8KMO0.9,适合; 0.7KMO0.8,比较适合; KMO0.5,越接近1越好; 累积方差解释率(cum
26、lative %):提取的公因子解释原有题项总方差的比率,要求至少50%,越接近100%越好; 因子负荷矩阵(Component Matrix):当只提取一个公因子时看此矩阵。要求每个题项在公因子的负荷量0.5 ,越接近1越好(聚敛效度); 旋转后的因子负荷矩阵(Rotated Component Matrix):当提取两个及以上公因子时,看此矩阵。要求:1、每个题项在公因子的负荷量0.5(聚敛效度);2、每个题项只在一个公因子上有负荷。如果一个题项在两个或两个以上的公因子上有负荷,则该变量应删除掉(区别效度)。,56,例:员工满意度(因子分析)1/9,Analyze Data Reducti
27、on Factor将报酬1至4、晋升1至4、管理者1至4、同事1至4、工作本身1至4、交际1至4选入Variables窗口点Descriptives, 在Correlation matrix框架中,选择KMO and Bartletts test of sphericity,单击Continue回到主对话框。点击Rotation,在Method框中点选Varimax(方差最大正交旋转法),点Continue回到主对话框。点Options,在Coefficient Display Format中,勾选Sorted by size和Suppress absolute values less tha
28、n,将值改为0.5,表明在输出的因子负荷矩阵中,小于0.5的值不显示。点Continue,点OK,员工满意度_因子分析.sav,57,例:员工满意度(因子分析)2/9,解读输出结果:,KMO0.8800.8,Bartlett球形检验值显著(p Z/2 时则接受研究假设(H1)。,假设检验的统计原理,Z/2,Z/2,接受H0,接受H1,接受H1,78,常用统计方法的零假设和研究假设,79,常用统计分析方法T检验,T检验是推断统计中最基本的一种方法,它是对连续变量的一种检验方法,包括: (1)单样本T检验:检验样本均值是否与总体的均值相等; (2)两个独立样本T检验:检验两个样本的均值是否相等;
29、(3)配对样本T检验:适用于两种情况:一是配对样本设计;二是适用于同一被试接受实验刺激之前、之后的数据。,80,1. 单样本T检验( One-Samples T Test ),单样本T检验:检验样本均值与已知总体均值之间是否存在差异。统计的前提是样本服从正态分布。但也有学者认为,单样本T检验非常稳健,只要没有极端值,结果都是稳定的。,为样本均值与检验值的差,因为总体方差未知,用样本方差S代替总体方差,n为样本数。,SPSS将自动计算T值。 H0:样本均值与总体均值之间不存在显著差异 该统计量服从(n-1)个自由度的T分布,SPSSS将根据T分布表给出的t值对应的相伴概率值。 如果sig. 0.
30、05,则接受H1:样本均值和总体均值有显著差异; 若sig. 0.05,则接受H0:样本均值和总体均值没有显著差异。,81,单样本T检验,例如我们知道上次语文成绩的均值为75分,数学成绩的均值为79分。这次测验的分数是否与上次测验的各科成绩有显著差异?H0:与原来的成绩没有差异。 H1:与原来的成绩有显著差异。Analyze Compare Means One Sample T Test将语文成绩选入Test Variables框内,在Test Value里输入75,点OK,学生成绩.sav,P值为0.001,小于0.05,所以接受研究假设,即语文成绩比原来有显著不同。,82,2. 两个独立样
31、本的T检验,两个样本均值差异的显著性检验Analyze Compare Means Independent-Samples T Test前提:变量是在总体中属于正态分布或是样本足够大(15个)方差齐性必须包括两个相互独立的样本,从总体中随机抽样获得自变量为定类变量,且为二分变量;因变量为连续型变量,学生成绩.sav,83,例: SPSS两个独立样本的T检验,例:两个班的语文成绩是否有显著差异?H0:两者没有显著差异。 H1:两者有显著差异。Analyze Compare Means Independent-Samples T Test将语文成绩选入 Test Variables框中班级 Gro
32、uping Variables, Define GroupsGroup1:1 ; Group2:2点Continue ,点OK,学生成绩.sav,标准差,标准误,平均值,样本数,84,例: SPSS两个独立样本的T检验,显示两个T检验的结果:方差齐和方差不齐方差齐性检验的结果(Levenes Test for Equality of Variances) 显著性水平0.3510.05,表明方差齐方差齐下显著性水平0.0510.05,但由于0.051和0.05十分接近,所以在这种情况时,通常是作为差异显著来对待,可以报告统计检验“接近显著”或“边缘显著”。再增加一些样本使检验结果更可靠。因为统计检验的显著水平与样本量有关,如果样本量较小,适当增加样本量可以使检验结果更明确。,85,3.两个配对样本的T检验,适用于配对样本(相关样本)设计,即只有两个处理水平的单因素随机区组设计,也适用于两个水平的重复测量设计。前提:正态性 两个变量所属的总体为正态分布。但当样本量足够大,超过20个时,允许总体为非正态。随机样本 样本必须从总体中随机抽样获得。否则给t检验给出的p值不可信。每个被试必须有两个测量结果(前后测量设计),如果通过事前测试对被试两两配对,则每对被试被视为一个样本。,