1、2.1.1合情推理与演绎推理-合情推理,教学目标,结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用 教学重点:了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用,2.1合情推理与演绎推理,2.1.1合情推理-归纳推理,歌德巴赫猜想:“任何一个不小于6的偶数都等于两个奇奇数之和”,即:偶数奇质数奇质数,歌德巴赫猜想的提出过程: 3710,31720,131730,,歌德巴赫猜想:“任何一个不小于6的偶数都等于两个奇奇数之和”,即:偶数奇质数奇质数,改写为:1037,20317,3
2、01317,63+3, 100029+971,83+5, 1002=139+863,105+5, 125+7,147+7,165+11,18 =7+11,,,这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理.(简称;归纳),归纳推理的几个特点;,1.归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围.,2.归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.,3.归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上.,归纳是立足于观察、经验、实验和对
3、有限资料分析的基础上.提出带有规律性的结论.,需证明,例1:已知数列an的第1项a1=1且(n=1,2,3 ),试归纳出这个数列的通项公式., 对有限的资料进行观察、分析、归纳 整理; 提出带有规律性的结论,即猜想; 检验猜想。,归纳推理的一般步骤:,例2:数一数图中的凸多面体的面数F、顶点数V和棱数E,然后用归纳法推理得出它们之间的关系.,4,6,4,5,5,6,5,9,8,4,6,4,5,5,6,5,9,8,6,6,8,6,12,8,12,6,10,4,6,4,5,5,6,5,9,8,6,6,8,6,12,8,12,6,10,7,7,9,16,9,10,15,10,15,F+V-E=2,猜
4、想,欧拉公式,例:如图有三根针和套在一根针上的若干金属片. 按下列规则,把金属片从一根针上全部移到另一根针上. 1.每次只能移动1个金属片; 2.较大的金属片不能放在较小的金属片上面.试推测;把n个金属片从1号针移到3号针,最少需要移动多少次?,解;设an表示移动n块金属片时的移动次数.,当n=1时,a1=1,当n=2时,a2=,3,1,2,3,当n=1时,a1=1,当n=2时,a2=,3,解;设an表示移动n块金属片时的移动次数.,当n=3时,a3=,7,当n=4时,a4=,15,猜想 an=,2n -1,1,2,3,2.1合情推理与演绎推理,2.1.1合情推理-类比推理,1.工匠鲁班类比带
5、齿的草叶和蝗虫的牙齿,发明了锯,2.仿照鱼类的外型和它们在水中沉浮的原理,发明了潜水艇.,3.科学家对火星进行研究,发现火星与地球有许多类似的特征; 1)火星也绕太阳运行、饶轴自转的行星; 2)有大气层,在一年中也有季节变更; 3)火星上大部分时间的温度适合地球上某些已知生物的生存,等等.,科学家猜想;火星上也可能有生命存在.,4)利用平面向量的本定理类比得到空间向量的基本定理.,在两类不同事物之间进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式, 称为类比推理.(简称;类比),类比推理的几个特点;,1.类比是从人们已经掌握了的事物的属性,推测正在研究的
6、事物的属性,是以旧有的认识为基础,类比出新的结果.,2.类比是从一种事物的特殊属性推测另一种事物的特殊属性.,3.类比的结果是猜测性的不一定可靠,单它却有发现的功能.,例1:类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想,s1,s2,s3,c2=a2+b2,例3:(2005年全国)计算机中常用的十六进位制是逢进的计算制,采用数字-和字母-共个计数符号,这些符号与十进制的数的对应关系如下表;,例如用进位制表示+,则(),E,例4:(2001年上海)已知两个圆x2+y2=1:与x2+(y-3)2=1,则由式减去式可得上述两圆的对称轴方程.将上述命题在曲线仍然为圆的情况下加以推广,即要
7、求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为-,(x-a)2+(y-b)2=r2与(x-c)2+(y-d)2=r2(ac或,设圆的方程为,bd),则由式减去式可得上述两圆的对称轴,方程.,圆的概念和性质,球的概念和性质,与圆心距离相等的两弦相等,与圆心距离不相等的两弦不相等,距圆心较近的弦较长,以点(x0,y0)为圆心, r为半径的圆的方程为(x-x0)2+(y-y0)2 = r2,圆心与弦(非直径)中点的连线垂直于弦,球心与不过球心的截面(圆面)的圆点的连线垂直于截面,与球心距离相等的两截面面积相等,与球心距离不相等的两截面面积不相等,距球心较近的面积较大,以点(x0,y0,z0)为球心, r为半径的球的方程为(x-x0)2+(y-y0)2+(z-z0)2 = r2,利用圆的性质类比得出求的性质,球的体积,球的表面积,圆的周长,圆的面积,再见,