1、2.1合情推理与演绎推理,2.1.1合情推理,歌德巴赫猜想:“任何一个不小于6的偶数都等于两个奇质数之和”,即:偶数奇质数奇质数,歌德巴赫猜想的提出过程: 3710,31720,131730,,歌德巴赫猜想:“任何一个不小于6的偶数都等于两个奇奇数之和”,即:偶数奇质数奇质数,改写为:1037,20317,301317,63+3, 100029+971,83+5, 1002=139+863,105+5, 125+7,147+7,165+11,18 =7+11,,,这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理.
2、(简称;归纳),归纳推理的几个特点;,1.归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围.,2.归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.,3.归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上.,归纳是立足于观察、经验、实验和对有限资料分析的基础上.提出带有规律性的结论.,需证明,例1:已知数列an的第1项a1=1且(n=1,2,3 ),试归纳出这个数列的通项公式., 对有限的资料进行观察、分析、归纳 整理; 提出带有规律性的结论,即猜想; 检验猜想。,归纳推理的一般步骤:,1.工匠鲁班类比带齿的草叶和蝗虫的牙齿
3、,发明了锯,2.仿照鱼类的外型和它们在水中沉浮的原理,发明了潜水艇.,3.科学家对火星进行研究,发现火星与地球有许多类似的特征; 1)火星也绕太阳运行、饶轴自转的行星; 2)有大气层,在一年中也有季节变更; 3)火星上大部分时间的温度适合地球上某些已知生物的生存,等等.,科学家猜想;火星上也可能有生命存在.,4)利用平面向量的本定理类比得到空间向量的基本定理.,在两类不同事物之间进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式, 称为类比推理.(简称;类比),类比推理的几个特点;,1.类比是从人们已经掌握了的事物的属性,推测正在研究的事物的属性,是以旧有
4、的认识为基础,类比出新的结果.,2.类比是从一种事物的特殊属性推测另一种事物的特殊属性.,3.类比的结果是猜测性的不一定可靠,但它却有发现的功能.,例2:类比实数的加法和乘法,列出它们相似的运算性质.,例3:类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.,从具体问题出发,观察、分析比较、联想,归纳类比,提出猜想,先根据已有的事实,经过观察、分析、比较、联想; 再进行归纳、类比; 然后提出猜想的推理.统称为合情推理.,“合乎情理”,数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.,例:如图有三根针和套在一根针上的若干金属片. 按下列规则,把金属片从一根针上全部移到另一根针上. 1.每次只能移动1个金属片; 2.较大的金属片不能放在较小的金属片上面.试推测;把n个金属片从1号针移到3号针,最少需要移动多少次?,解;设an表示移动n块金属片时的移动次数.,当n=1时,a1=1,当n=2时,a2=,3,1,2,3,当n=1时,a1=1=2-1,当n=2时,a2=,3=4-1,当n=3时,a3=,7=8-1,当n=4时,a4=,15=16-1,猜想 an=,2n -1,1,2,3,