1、线性代数 第五章相似矩阵及二次型 定义 向量内积的定义及运算规律 定义 向量的长度具有下列性质 向量的长度 定义 向量的夹角 所谓正交向量组 是指一组两两正交的非零向量 向量空间的基若是正交向量组 就称为正交基 定理 定义 正交向量组的性质 施密特正交化方法 第一步正交化 第二步单位化 定义 正交矩阵与正交变换 方阵为正交矩阵的充分必要条件是的行 列 向量都是单位向量 且两两正交 定义若为正交矩阵 则线性变换称为正交变换 正交变换的特性在于保持线段的长度不变 定义 方阵的特征值和特征向量 有关特征值的一些结论 定理 定理属于同一个特征值的特征向量的非零线性组合仍是属于这个特征值的特征向量 有关
2、特征向量的一些结论 定义 矩阵之间的相似具有 1 自反性 2 对称性 3 传递性 相似矩阵 有关相似矩阵的性质 若与相似 则与的特征多项式相同 从而与的特征值亦相同 4 能对角化的充分必要条件是有个线性无关的特征向量 5 有个互异的特征值 则与对角阵相似 实对称矩阵的相似矩阵 定义 二次型 二次型与它的矩阵是一一对应的 定义 二次型的标准形 化二次型为标准形 定义 正定二次型 惯性定理 注意 正定二次型的判定 一 证明所给矩阵为正交矩阵 典型例题 二 将线性无关向量组化为正交单位向量组 三 特征值与特征向量的求法 四 已知的特征值 求与相关矩阵的特征值 五 求方阵的特征多项式 六 关于特征值的
3、其它问题 七 判断方阵可否对角化 八 利用正交变换将实对称矩阵化为对角阵 九 化二次型为标准形 一 证明所给矩阵为正交矩阵 证明 将线性无关向量组化为正交单位向量组 可以先正交化 再单位化 也可同时进行正交化与单位化 二 将线性无关向量组化为正交单位向量组 解一先正交化 再单位化 解二同时进行正交化与单位化 第三步将每一个特征值代入相应的线性方程组 求出基础解系 即得该特征值的特征向量 三 特征值与特征向量的求法 第一步计算的特征多项式 第二步求出特征多项式的全部根 即得的全部特征值 解第一步计算的特征多项式 第三步求出的全部特征向量 解 四 已知的特征值 求与相关矩阵的特征值 解 五 求方阵的特征多项式 解 六 关于特征值的其它问题 方法一 方法二 方法三 解 七 判断方阵可否对角化 解 1 可对角化的充分条件是有个互异的特征值 下面求出的所有特征值 解第一步求A的特征值 由 八 利用正交变换将实对称矩阵化为对角阵 九 化二次型为标准形 解第一步将表成矩阵形式 解 第五章测试题 一 填空题 每小题4分 共32分 二 计算题 共40分 三 证明题 共20分 四 8分 设二次型 经正交变换化成 测试题答案