1、青朱出入图-刘徽证法二cccb acbaABCEF PQMNPHGFEDCBAabcabcabcabc项明达证明做两个全等的直角三角形,设它们的两条直角边长分别为 a、b(ba) ,斜边长为 c. 再做一个边长为 c 的正方形. 把它们拼成如图所示的多边形,使 E、A、C 三点在一条直线上.过点 Q 作 QPBC,交 AC 于点 P. 过点 B 作 BMPQ,垂足为 M;再过点F 作 FNPQ,垂足为 N. BCA = 90º,QPBC, MPC = 90º, BMPQ, BMP = 90º, BCPM 是一个矩形,即MBC = 90º. QBM + M
2、BA = QBA = 90º,ABC + MBA = MBC = 90º, QBM = ABC,又 BMP = 90º,BCA = 90º,BQ = BA = c, RtBMQ RtBCA.同理可证 RtQNF RtAEF.从而将问题转化为梅文鼎证明做四个全等的直角三角形,设它们的两条直角边长分别为 a、b ,斜边长为 c. 把它们拼成如图那样的一个多边形,使 D、E、F 在一条直线上. 过 C 作 AC 的延长线交 DF 于点 P. D、E、F 在一条直线上, 且 RtGEF RtEBD, EGF = BED, EGF + GEF = 90°
3、, BED + GEF = 90°, BEG =180º90º= 90º.又 AB = BE = EG = GA = c, ABEG 是一个边长为 c 的正方形. ABC + CBE = 90º. RtABC RtEBD, ABC = EBD. EBD + CBE = 90º. 即 CBD= 90º.又 BDE = 90º,BCP = 90º,BC = BD = a. BDPC 是一个边长为 a 的正方形.同理,HPFG 是一个边长为 b 的正方形.设多边形 GHCBE 的面积为 S,则,212SbaabSc212, 2c.