1、,1. 线性方程组,的解取决于,系数,常数项,一、矩阵概念的引入,对线性方程组的 研究可转化为对 这张表的研究.,线性方程组的系数与常数项按原位置可排为,2. 某航空公司在A,B,C,D四城市之间开辟了若干航线 ,如图所示表示了四城市间的航班图,如果从A到B有航班,则用带箭头的线连接 A 与B.,四城市间的航班图情况常用表格来表示:,发站,到站,这个数表反映了四城市间交通联接情况.,二、矩阵的定义,由 个数 排成的 行 列的数表,称为 矩阵.简称 矩阵.,记作,简记为,元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵.,主对角线,副对角线,例如,是一个 实矩阵,是一个 复矩阵,是一个 矩
2、阵,是一个 矩阵,是一个 矩阵.,例如,是一个3 阶方阵.,几种特殊矩阵,(2)只有一行的矩阵,称为行矩阵(或行向量).,只有一列的矩阵,称为列矩阵(或列向量).,称为对角 矩阵(或对角阵).,(4)元素全为零的矩阵称为零矩阵, 零 矩阵记作 或 .,注意,不同阶数的零矩阵是不相等的.,例如,记作,(5)方阵,称为单位矩阵(或单位阵).,同型矩阵与矩阵相等的概念,1.两个矩阵的行数相等,列数相等时,称为同型矩阵.,例如,为同型矩阵.,线性变换.,系数矩阵,线性变换与矩阵之间存在着一一对应关系.,若线性变换为,称之为恒等变换.,单位阵.,线性变换,这是一个以原点为中心 旋转 角的旋转变换.,例2 设,解,三、小结,(1)矩阵的概念,(2) 特殊矩阵,方阵,行矩阵与列矩阵;,单位矩阵;,对角矩阵;,零矩阵.,思考题,矩阵与行列式的有何区别?,思考题解答,矩阵与行列式有本质的区别,行列式是一个 算式,一个数字行列式经过计算可求得其值,而 矩阵仅仅是一个数表,它的行数和列数可以不同.,