1、1毕业论文(设计)文献综述对算术平均法的研究To the Arithmetic Mean Method of Research院 系 数学与计算机科学系 专 业 数学与应用数学 学 生 班 级 2005 级(专升本) 对算术平均法的研究前言算术平均法是 90 年代开始发展起来的一种新的决策科学方法。它发源于层次分析法,拥有同样深刻的数学基础。但其更为简单的应用方式和合理的决策手段引起了越来越多学者和决策者们的关注与重视。随着近二十年对算术平均法的不断研究与改进,其已形成了自己的基本原理和运作方式,对许多决策问题的求解作出了一定的贡献。算术平均法是在多目标、多准则的条件下,对多种方案进2行选择和
2、判断的一种简洁而有力的工具。随着算术平均法应用领域的日益增多,人们自然地要求了解和掌握算术平均法的应用技巧。因此本文宗旨正是要整合算术平均法的理论依据,给出算术平均法的基本原理,使算术平均法成为可独立作为多目标决策判断的一种完整的决策方法。正文主体对算术平均法的理论依据进行整合,详细阐述了算术平均法的基本原理,使算术平均法成为可独立作为多目标决策判断的一种完整的决策方法。最后以两个实例来说明本文方法的实施过程。文献 1 对算术平均法提出了质疑,通过一定的数据和实验给出了算术平均法的决策技巧,提出了较为可行的改进方法。此时算术平均法基本计算原理的雏形已基本形成。但一个让人们信赖的决策方法,除了可
3、行的计算原理之外,还需让人们了解其发展的形态和理论依据。文献 2 着重介绍了 AHP 一些必要而易行的实用技巧。同时,对层次分析法的原理及其数学基础也作了一定的介绍。文中依次介绍了 AHP 的产生背景、应用特点、基本原理、计算问题、实用技巧、应用介绍等等。其循序渐进的章节能使人们很快掌握 AHP 的基本计算原理,并将其运用到实践中去。文献 3 最早提出“算术平均法” ,对整合算术平均法的理论依据有一定的参考价值。总结通过参阅和研究文献,本文借鉴文献中的介绍方法,结合层次分析法进一步完善算术平均法的理论依据,同时,也介绍了算术平均法的实用技巧,并通过实例加深读者对算术平均法基础原理的理解,使算术
4、平均法的理论及方法更为详尽的展现在人们的眼前,进而使人们掌握算术平均法的实用技巧。参考文献1 蒋晓云 “算术平均法”的质疑与改进J 数学的实践与认识,1991,21(3):5663 2 刘新宪,朱道立 选择与判断AHP(层次分析法)决策M 上海科学3普及出版社,19903 潘吟,吴望名 反对称矩阵的最优传递阵J 数学的实践与认识,1988,18(2):4450 44504 姜朋 图书选题的模糊综合评判J 东北财经大学学报,2003,25(1):89915 栾惠德 层次分析法在顾客满意度调查中的简化应用J 知识丛林,2005,199(10):1341356 王计平 对一种改进层次分析法误导的理论分析J 系统工程学报,1999, (01):9598 7 王计平 最优传递矩阵法新论 系统工程理论与实践,1999, (10):125126