1、最新高考物理闭合电路的欧姆定律的基本方法技巧及练习题及练习题( 含答案 )一、高考物理精讲专题闭合电路的欧姆定律1 如图 (1)所示 ,线圈匝数 n 200 匝,直径 d1 40cm,电阻 r 2,线圈与阻值R6的电阻相连在线圈的中心有一个直径d 2 20cm 的有界圆形匀强磁场,磁感应强度按图(2)所示规律变化,试求: (保留两位有效数字 )(1)通过电阻 R 的电流方向和大小;(2)电压表的示数【答案】( 1)电流的方向为BA ;7.9A; ( 2)47V【解析】【分析】【详解】(1)由楞次定律得电流的方向为BA由法拉第电磁感应定律得E nBd2)2B0.30.2nS 磁场面积 S(而t0
2、.2T / s 1T / stt20.1根据闭合电路的欧姆定律E7.9 AIR r( 2)电阻 R 两端的电压为 U=IR=47V2 手电筒里的两节干电池(串联)用久了,灯泡发出的光会变暗,这时我们会以为电池没电了。但有人为了“节约”,在手电筒里装一节新电池和一节旧电池搭配使用。设一节新电池的电动势 E1=1.5V,内阻 r1 =0.3 ;一节旧电池的电动势E2=1.2V,内阻 r 2=4.3 。手电筒使用的小灯泡的电阻 R=4.4 。求:(1)当使用两节新电池时,灯泡两端的电压;(2)当使用新、旧电池混装时,灯泡两端的电压及旧电池的内阻r2 上的电压;(3)根据上面的计算结果,分析将新、旧电
3、池搭配使用是否妥当。【答案】 (1)2.64V; (2)1.29V; (3)不妥当。因为旧电池内阻消耗的电压Ur 大于其电动势 E2(或其消耗的电压大于其提供的电压),灯泡的电压变小【解析】【分析】【详解】(1)两节新电池串联时,电流2E10.6AI =2r1R灯泡两端的电压UIR2.64V(2)一新、一旧电池串联时,电流E1E20.3AI =r1Rr2灯泡两端的电压UI R1.32V旧电池的内阻r 2 上的电压U rI r21.29V(3)不妥当。因为旧电池内阻消耗的电压U大于其电动势E(或其消耗的电压大于其提供的r2电压),灯泡的电压变小。3 如图所示电路中,r 是电源的内阻, R1 和
4、R2是外电路中的电阻,如果用Pr , P1 和 P2 分别表示电阻 r ,R12上所消耗的功率,当12, RR =R = r 时,求:(1) IrI1I2 等于多少(2)Pr P1 P2 等于多少【答案】 (1)2: 1: 1;(2)4: 1:1。【解析】【详解】(1)设干路电流为 I,流过 R1 和 R2 的电流分别为 I1 和 I2。由题, R1 和 R2 并联,电压相等,电阻也相等,则电流相等,故1I1=I2=I2即Ir I1 I2=2: 1:1(2)根据公式 P=I2R,三个电阻相等,功率之比等于电流平方之比,即Pr: P1: P2=4: 1: 14 如图所示,电路中电源内阻不计,水平
5、放置的平行金属板A、 B间的距离为d,金属板长为 L,在两金属板左端正中间位置 M,有一个小液滴以初速度 v0 水平向右射入两板间,已知小液滴的质量为 m,带负电,电荷量为 q要使液滴从 B板右侧边缘射出电场,电动势E是多大? ( 重力加速度用g 表示 )【答案】E2md 2v02 2mgdqL2q【解析】【详解】由闭合电路欧姆定律得IEERR2RE两金属板间电压为UBA IR2由牛顿第二定律得q U BA mgmad液滴在电场中做类平抛运动,有0d1at2L v t22联立解得 E2md 2v022mgdqL2q【点睛】题是电路与电场两部分知识的综合,关键是确定电容器的电压与电动势的关系,掌
6、握处理类平抛运动的分析方法与处理规律5 如图所示,竖直放置的两根足够长的光滑金属导轨相距为L,导轨的两端 分别与电源(串有一滑动变阻器R)、定值电阻、电容器(原来不带电)和开关K 相连整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B一质量为 m,电阻不计的金属棒 ab 横跨在导轨上已知电源电动势为E,内阻为 r,电容器的电容为 C,定值电阻的阻值为 R0,不计导轨的电阻(1)当 K 接 1 时,金属棒 ab 在磁场中恰好保持静止,则滑动变阻器接入电路的阻值R 为多大?(2)当 K 接 2 后,金属棒 ab 从静止开始下落,下落距离s 时达到稳定速度,则此稳定速度的大小为多大?
7、下落s 的过程中所需的时间为多少?(3) ab 达到稳定速度后,将开关K 突然接到 3,试通过推导,说明ab 作何种性质的运动?求 ab 再下落距离 s 时,电容器储存的电能是多少?(设电容器不漏电,此时电容器没有被击穿)EBLB4L4sm2 gR02( 3)匀加速直线运动mgsCB2 L2【答案】( 1)r ( 2)2 L2mgmgR0 B2 L2m cB【解析】【详解】(1)金属棒 ab 在磁场中恰好保持静止,由 BIL=mgIErR得 REBLrmgB2 L2v(2)由 mgR0得mgR0vB2 L2由动量定理,得 mgt BILtBLsmv 其中 q ItR0得 t B4 L4 s m
8、2 gR02 mgR0 B2 L2qC UCBL vCBLv(3) K 接 3 后的充电电流 IttCBLattmg-BIL=ma得 amgmCB 2 L2 =常数所以 ab 棒的运动性质是“匀加速直线运动”,电流是恒定的v22-v2=2as根据能量转化与守恒得E mgs (1mv221mv2 )22解得 :mgsCB2 L2E2L2m cB【点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况6 如图所示,质量m=1 kg 的通电导体棒在安培力作用下静止在倾角为37、宽度L=1 m的光滑绝缘框架上。匀强磁场方向垂直于框架平面向下(磁场仅
9、存在于绝缘框架内)。右侧回路中,电源的电动势 E=8 V,内阻 r=1 。电动机 M 的额定功率为 8 W,额定电压为 4 V,线圈内阻 R 为 0.2 ,此时电动机正常工作 (已知 sin 37 =0.6, cos 37 =0.8,重力加速度 g取 10 m/s 2)。试求 :(1)通过电动机的电流IM 以及电动机的输出的功率P 出 ;(2)通过电源的电流I 总以及导体棒的电流I ;(3)磁感应强度B 的大小。【答案】 ( 1) 7.2W; ( 2) 4A; 2A; ( 3) 3T。【解析】【详解】(1) 电动机的正常工作时,有PUI M所以I MP2AU故电动机的输出功率为P出 P I M
10、2 R 7.2W(2) 对闭合电路有UEI 总 r所以I总EU4A;r故流过导体棒的电流为II 总I M2A(3) 因导体棒受力平衡,则F安mg sin376N由F安BIL可得磁感应强度为F安B3TIL7 一电瓶车的电源电动势E48V,内阻不计,其电动机线圈电阻R3v 4m/s,当它以的速度在水平地面上匀速行驶时,受到的阻力f48N。除电动机线圈生热外,不计其他能量损失,求:(1)该电动机的输出功率;(2)电动机消耗的总功率。【答案】 (1) 192W , (2) 384W 。【解析】【详解】(1)电瓶车匀速运动,牵引力为:Ff48N电动机的输出功率为:P出Fv484W192W ;(2)由能量
11、守恒定律得:EIP出I 2 R代入数据解得:I8A所以电动机消耗的总功率为:P总EI488W384W 。8 如图所示,电路中电阻 R 10 ,电源的内电阻 r 2 ,灯泡 L 上标有 “3V 0.25A的”字样,闭合开关 S,灯泡正常发光求:( 1)灯泡的功率;( 2)电源的电动势;( 3)电源的总功率;【答案】 (1)0.75W(2) 6V(3)1.5W【解析】【详解】(1)由题知,灯泡正常发光,则灯泡的电压为U=3V,电流为 I=0.25A所以灯泡的功率为 P=UI=0.75W(2)由闭合电路欧姆定律得:电源的电动势E=U+I( R+r) =3+0.25( 10+2) =6V(3)电源的总
12、功率:P=IE=0.25 6W=0.5W.9 如图所示的电路中,当S 闭合时,电压表和电流表(均为理想电表 )的示数各为1.6V 和0.4A当 S 断开时,它们的示数各改变0.1V 和 0.1A,求电源的电动势和内电阻【答案】 E 2 V,r 1 【解析】试题分析:当S 闭合时, R1、 R2 并联接入电路,由闭合电路欧姆定律得:U1 E I1r 即 E1 6 04r , 当 S 断开时,只有R1 接入电路,由闭合电路欧姆定律得:U2 E I2r,即 E( 1 6 0 1)( 0 40 1) r, 由 得: E 2 V,r 1 考点:闭合电路欧姆定律【名师点睛】求解电源的电动势和内阻,常常根据
13、两种情况由闭合电路欧姆定律列方程组求解,所以要牢记闭合电路欧姆定律的不同表达形式10 如图所示,电源电动势E=30 V,内阻 r=1 ,电阻 R1=4 , R2=10 两正对的平行金属板长 L=0.2 m ,两板间的距离 d=0.1 m闭合开关S 后,一质量8m=510kg,电荷量62q=+4 10C 的粒子以平行于两板且大小为=5 10m/s 的初速度从两板的正中间射入,求粒子在两平行金属板间运动的过程中沿垂直于板方向发生的位移大小?(不考虑粒子的重力)【答案】【解析】根据闭合电路欧姆定律,有:电场强度:粒子做类似平抛运动,根据分运动公式,有:L=v0ty= at2其中:联立解得:点睛:本题
14、是简单的力电综合问题,关键是明确电路结构和粒子的运动规律,然后根据闭合电路欧姆定律和类似平抛运动的分运动公式列式求解11 如图所示,图线AB 是某闭合电路的路端电压随电流变化的关系图线,OM 是某定值电阻 R 的伏安特性曲线,由图求:( 1) R 的阻值;( 2)处于直线 OM 与 AB 交点 C 时电源的输出功率;( 3)电源的最大输出功率。【答案】 (1)( 2) 8W ( 3) 9W【解析】【分析】(1)根据伏安特性曲线的斜率求出电阻的阻值(2)交点对应的电压和电流为电源输出电压和输出电流,根据 P=UI 求出电源的输出功率( 3)当外电阻等于内阻时,电源输出功率最大【详解】(1) OM
15、 是电阻的伏安特性曲线,电阻:( 2)交点 C 处电源的输出功率为:( 3)电源的最大输出功率 Pm,是在外电阻的阻值恰等于电源内电阻时达到的答:( 1)R 的阻值为2(2)处于直线OM 与 AB 交点 C 时电源的输出功率为8W( 3)电源的最大输出功率为 9W 【点睛】对于图线关键要根据物理规律,从数学角度来理解其物理意义本题要抓住图线的斜率、交点的意义来理解图象的意义12 如图所示的电路中,电源电动势E=10V,内阻 r=0.5 ,电动机的电阻R0=1.0 ,电阻R1=1.5 电动机正常工作时,电压表的示数U1=3.0V,求:( 1)电源释放的电功率;( 2)电动机消耗的电功率将电能转化
16、为机械能的功率;【答案】 (1) 20W ( 2) 12W 8W【解析】【分析】(1)通过电阻两端的电压求出电路中的电流I,电源的总功率为P=EI,即可求得;(2)由 U 内 =Ir 可求得电源内阻分得电压,电动机两端的电压为U=E-U1-U 内 ,电动机消耗的功率为P 电 =UI;电动机将电能转化为机械能的功率为P 机 =P 电 -I2R0 【详解】(1)电动机正常工作时,总电流为:I=U 1R3.0I=A=2 A,1.5电源释放的电功率为:P=EI =102 W=20 W;(2)电动机两端的电压为:U= E Ir U1则 U =(10 2 0.5 3.0)V=6 V;电动机消耗的电功率为:P 电 =UI=62 W=12 W;电动机消耗的热功率为:P 热 =I2 0 2 1.0 W=4 W;R =2电动机将电能转化为机械能的功率,据能量守恒为:P 机 =P 电 P 热P 机 =( 124) W=8 W;【点睛】对于电动机电路,关键要正确区分是纯电阻电路还是非纯电阻电路:当电动机正常工作时,是非纯电阻电路;当电动机被卡住不转时,是纯电阻电路对于电动机的输出功率,往往要根据能量守恒求解