1、2016全国一设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.2016全国二已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为k(k0)的直线交E于A,M两点,点N在E上,MANA.(I)当t=4,时,求AMN的面积;(II)当时,求k的取值范围.2016全国三已知抛物线C: 的焦点为F,平行于x轴的两条直线分别交C于A,B两点,交C的准线于P,Q两点.(I)若F在线
2、段AB上,R是PQ的中点,证明ARFQ;(II)若PQF的面积是ABF的面积的两倍,求AB中点的轨迹方程.2016天津设椭圆的右焦点为,右顶点为.已知,其中为原点,为椭圆的离心率. ()求椭圆的方程;()设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点.若,且,求直线的斜率的取值范围.2015全国一在直角坐标系xoy中,曲线C:y与直线ykxa(a0)交于M,N两点,()当k0时,分别求C在点M和N处的切线方程;()y轴上是否存在点P,使得当k变动时,总有OPMOPN?说明理由.2015全国二已知椭圆C:(m0),直线不过原点O且不平行于坐标轴,l与C有两个交点A,B,线
3、段AB的中点为M.() 证明:直线OM的斜率与的斜率的乘积为定值;()若l过点,延长线段OM与C交于点P,四边形OAPB能否平行四边行?若能,求此时l的斜率;若不能,说明理由2015浙江已知椭圆上两个不同的点A,B关于直线对称()求实数的取值范围;()求面积的最大值(为坐标原点)2015四川如图,椭圆E: 的离心率是,过点P(0,1)的动直线与椭圆交于A、B两点当直线平行于x轴时,直线被椭圆E截的线段长为()求椭圆E的方程()在平面直角坐标系中是否存在与点P不同的定点Q,使得恒成立,若存在,求出Q点的坐标,若不存在,说明理由2015山东平面直角坐标系xOy中,已知椭圆的离心率为,左、右焦点分别
4、是.以为圆心以3为半径的圆与以为圆心以1为半径的圆相交,且交点在椭圆上.()求椭圆的方程;()设椭圆为椭圆上任意一点,过点的直线交椭圆于两点,射线交椭圆于点.()求的值;()求面积的最大值.2015湖北一种作图工具如图1所示是滑槽的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且,当栓子D在滑槽AB内作往复运动时,带动N绕转动一周(D不动时,N也不动),M处的笔尖画出的曲线记为C以为原点,所在的直线为轴建立如图2所示的平面直角坐标系()求曲线C的方程;()设动直线与两定直线和分别交于两点若直线总与曲线有且只有一个公共点,试探究:OPQ的面积是否存在最
5、小值?若存在,求出该最小值;若不存在,说明理由2015安徽设椭圆E的方程为,点O为坐标原点,点A的坐标为,点B的坐标为,点M在线段AB上,满足,直线OM的斜率为.(I)求E的离心率;(II)设点C的坐标为,N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.2015陕西已知椭圆()的半焦距为,原点到经过两点,的直线的距离为()求椭圆的离心率;()如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程2014全国一已知点(0,-2),椭圆:的离心率为,是椭圆的焦点,直线的斜率为,为坐标原点.()求的方程;()设过点的直线与相交于两点,当的面积最大时,求的方程2014全国二设,分别是
6、椭圆的左右焦点,M是C上一点且与x轴垂直,直线与C的另一个交点为N.()若直线MN的斜率为,求C的离心率;()若直线MN在y轴上的截距为2,且,求a,b.2014天津设椭圆()的左、右焦点为,右顶点为,上顶点为.已知.()求椭圆的离心率;()设为椭圆上异于其顶点的一点,以线段为直径的圆经过点,经过原点的直线与该圆相切. 求直线的斜率.2014湖南为坐标原点,椭圆:(ab0)的左、右焦点分别为,离心率为:双曲线:的左、右焦点分别为,离心率为。已知=,且。()求、的的方程;()过做的不垂直于y轴的弦AB,M为AB的中点,当直线OM与交于P,Q两点时,求四边形APBQ面积的最小值2014广东已知椭圆
7、的一个焦点为,离心率为,(1)求椭圆C的标准方程;(2)若动点为椭圆外一点,且点P到椭圆C学科网的两条切线相互垂直,求点P的轨迹方程。2014安徽如图,已知两条抛物线和,过原点的两条直线和,与分别交于两点,与分别交于两点。()证明:()过作直线(异于,)与分别交于两点。记与的面积分别为求的值。2013全国一已知圆:,圆:,动圆与圆外切并与圆内切,圆心的轨迹为曲线.()求的方程;()是与圆,圆都相切的一条直线,与曲线交于,两点,当圆的半径最长时,求. 2013全国二平面直角坐标系中,过椭圆M:右焦点的直线交M于A、B两点,P为AB的中点,且OP的斜率为。()求M的方程()C、D为M上的两点,若四
8、边形ACBD的对角线CDAB,求四边形ACBD面积的最大值。2013安徽设椭圆的焦点在轴上()若椭圆的焦距为1,求椭圆的方程;()设分别是椭圆的左、右焦点,为椭圆上的第一象限内的点,直线交轴与点,并且,证明:当变化时,点在某定直线上2014辽宁圆的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线过点P且离心率为.(1)求的方程;(2)椭圆过点P且与有相同的焦点,直线过的右焦点且与交于A,B两点,若以线段AB为直径的圆心过点P,求的方程.2012全国设抛物线的焦点为,准线为,已知以为圆心,为半径的圆交于两点;(1)若,的面积为;求的值及圆的方程;(2)若三点在同一直线上,直线与平行,且与只有一个公共点,求坐标原点到距离的比值。