1、习题二2-1两质量分别为m和M的物体并排放在光滑的水平桌面上,现有一水平力F作用在物体m上,使两物体一起向右运动,如题图21所示,求两物体间的相互作用力? 若水平力F作用在M上,使两物体一起向左运动,则两物体间相互作用力的大小是否发生变化?分析:用隔离体法,进行受力分析,运用牛顿第二定律列方程。解:以m、M整体为研究对象,有:以m为研究对象,如图2-1(a),有m(a)m由、,有相互作用力大小若F作用在M上,以m为研究对象,如图2-1(b)有m(b)m由、,有相互作用力大小,发生变化。2-2. 在一条跨过轻滑轮的细绳的两端各系一物体,两物体的质量分别为M1和M2 ,在M2上再放一质量为m的小物
2、体,如图所示,若M1=M2=4m,求m和M2之间的相互作用力,若M1=5m,M2=3m,则m与M2之间的作用力是否发生变化?分析:由于轻滑轮质量不计,因此滑轮两边绳中的张力相等,用隔离体法进行受力分析,运用牛顿第二定律列方程。解:取向上为正,如图2-2,分别以M1、M2和m为研究对象,有: 又:T1=T2,则: =当M1=M2= 4m, 当M1=5m, M2=3m, ,发生变化。2-3.质量为M的气球以加速度a匀加速上升,突然一只质量为m的小鸟飞到气球上,并停留在气球上。若气球仍能匀加速向上,求气球的加速度减少了多少?分析:用隔离体法受力分析,运用牛顿第二定律列方程。解:为空气对气球的浮力,取
3、向上为正。 分别由图23(a)、(b)可得:则2-4如图2-4所示,人的质量为60kg,底板的质量为40kg。人若想站在底板上静止不动,则必须以多大的力拉住绳子?分析:用隔离体法受力分析,人站在底板上静止不动,底板、人受的合力分别为零.解:设底板、人的质量分别为M,m,以向上为正方向,如图2-4(a)、(b),分别以底板、人为研究对象,则有: F为人对底板的压力,为底板对人的弹力。F=又:则由牛顿第三定律,人对绳的拉力与是一对作用力与反作用力,即大小相等,均为245(N)。2-5一质量为m的物体静置于倾角为的固定斜面上。已知物体与斜面间的摩擦系数为。试问:至少要用多大的力作用在物体上,才能使它
4、运动?并指出该力的方向。分析:加斜向下方向的力,受力分析,合力为零。解:如图25,建坐标系,以沿斜面向上为正方向。在与所在的平面上做力,且(若,此时F偏大)则:则有:即:2-6. 一木块恰好能在倾角的斜面上以匀速下滑,现在使它以初速率沿这一斜面上滑,问它在斜面上停止前,可向上滑动多少距离?当它停止滑动时,是否能再从斜面上向下滑动? 分析:利用牛顿定律、运动方程求向上滑动距离。停止滑动时合力为零。解:由题意知: 向上滑动时, 联立求解得 当它停止滑动时,会静止,不再下滑 2-7. 5kg的物体放在地面上,若物体与地面之间的摩擦系数为0.30,至少要多大的力才能拉动该物体?分析:要满足条件,则F的
5、大小至少要使水平方向上受力平衡。解:如图27, 当28. 两个圆锥摆,悬挂点在同一高度,具有不同的悬线长度,若使它们运动时两个摆球离开地板的高度相同,试证这两个摆的周期相等分析:垂直方向的力为零,水平方向的力提供向心力。先求速度,再求周期讨论。证:设两个摆的摆线长度分别为和,摆线与竖直轴之间的夹角分别为和,摆线中的张力分别为和,则 解得: 题2-8第一只摆的周期为 同理可得第二只摆的周期 由已知条件知 29. 质量分别为M和M+m的两个人,分别拉住定滑轮两边的绳子往上爬,开始时,两人与滑轮的距离都是h 。设滑轮和绳子的质量以及定滑轮轴承处的摩擦力均可忽略不计,绳长不变。试证明,如果质量轻的人在
6、内爬到滑轮,这时质量重的人与滑轮的距离为(b) (c) 图2-9 。分析:受力分析,由牛顿第二定律列动力学方程。证明:如图29(b)、(c),分别以M、M+m为研究对象,设M、M+m对地的加速度大小分别为(方向向上)、(方向向下),则有:对M,有:质量重的人与滑轮的距离:。此题得证。2-10.质量为m1=10kg和m2=20kg的两物体,用轻弹簧连接在一起放在光滑水平桌面上,以F=200N的力沿弹簧方向作用于m2 ,使m1得到加速度a1=120cms-2,求m2获得的加速度大小。分析:受力分析,由牛顿定律列方程。解:物体的运动如图210(a ),以m1为研究对象,如图(b),有:以m2为研究对
7、象,如图(c),有:又有:则: 211. 顶角为的圆锥形漏斗垂直于水平面放置,如图2-11所示. 漏斗内有一个质量为m的小物体,m距漏斗底的高度为h。问(1)如果m与锥面间无摩擦,要使m停留在h高度随锥面一起绕其几何轴以匀角速度转动,m的速率应是多少?(2)如果m与锥面间的摩擦系数为,要使m稳定在h高度随锥面一起以匀角速度转动,但可以有向上或向下运动的趋势,则速率范围是什么?分析:(1)小物体此时受到两个力作用:重力、垂直漏斗壁的支承力,合力为向心力;(2)小物体此时受到三个力的作用:重力、垂直漏斗壁的支承力和壁所施的摩擦力。当支承力在竖直方向分量大于重力,小球有沿壁向上的运动趋势,则摩擦力沿
8、壁向下;当重力大于支承力的竖直方向分量,小球有沿壁向下的运动趋势,则摩擦力沿壁向上。这三个力相互平衡时,小物体与漏斗相对静止。解:(1)如图211(a),有:,则:(2)若有向下运动的趋势,且摩擦力为最大静摩擦力时,速度最小,则图211(b)有:水平方向:竖直方向: 又:则有:若有向上运动的趋势,且摩擦力最大静摩擦力时,速度最大,则图211(c),有:水平方向:竖直方向: 又:则有:综合以上结论,有212 如图2-12所示,已知两物体A、B的质量均为物体A以加速度运动,求物体B与桌面间的摩擦力。(滑轮与绳子的质量不计)分析:因为滑轮与连接绳的质量不计,所以动滑轮两边绳中的张力相等,定滑轮两边绳
9、中的张力也相等,但是要注意两物体的加速度不相等。解:图212(a)以A为研究对象,其中、分别为滑轮左右两边绳子的拉力。有:且:图212(b)以B为研究对象,在水平方向上,有:又:, 联立以上各式,可解得:AB题图212图212b图212a213一质量为m的小球最初位于如图2-13所示的A点,然后沿半径为r的光滑圆轨道ADCB下滑,试求小球到达C点时的角速度和对圆轨道的作用力.题图213分析:如图213,对小球做受力分析,合力提供向心力,由牛顿第二定律,机械能守恒定律求解。解:又:图213由、可得: 由、可得,214质量为m的摩托车,在恒定的牵引力F的作用下工作,它所受的阻力与其速率的平方成正比
10、,它能达到最大速率是 试计算从静止加速到所需的时间以及所走过的路程。分析:加速度等于零时,速度最大,阻力为变力,积分求时间、路程。解:设阻力,则加速度,当a=0时,速度达到最大值,则有:又,即:题图215,即所求的时间对式两边同乘以dx,可得:2-15如图2-15所示,A为定滑轮,B为动滑轮,3个物体的质量分别为m1=200g,m2=100g,m3=50g.(1)求每个物体的加速度(2)求两根绳中的张力(滑轮和绳子质量不计,绳子的伸长和摩擦力可略)。分析:相对运动。相对地运动,、相对B运动,。根据牛顿牛顿定律和相对运动加速度的关系求解。解:如下图2-15,分别是m1、m2、m3的受力图。设a1
11、、a2、a3、a分别是m1、m2、m3、B对地的加速度;a2B、a3B分别是m2、m3对B的加速度,以向上为正方向,可分别得出下列各式图215又:且:则:则:又:则由,可得:(2)将a3的值代入式,可得:。题图2162-16桌面上有一质量M=1.50kg的板,板上放一质量为m=2.45kg的另一物体,设物体与板、板与桌面之间的摩擦系数均为0.25. 要将板从物体下面抽出,至少需要多大的水平力?分析:要想满足题目要求,需要M、m运动的加速度满足:,如图2-16(b),以M为研究对象,N1,N2,f1,f2分别为m给M的压力,地面给M的支持力,m给M的摩擦力,地面给M的摩擦力。解:如图2-16(c
12、),以m为研究对象,分别为M给m的支持力、摩擦力。则有:又则可化为:则:2-17已知一个倾斜度可以变化但底边长L不变的斜面.(1)求石块从斜面顶端无初速地滑到底所需时间与斜面倾角之间的关系,设石块与斜面间的滑动摩擦系数为;(2)若斜面倾角为时石块下滑的时间相同,问滑动摩擦系数为多大?分析:如图2-17,对石块受力分析。在斜面方向由牛顿定律列方程,求出时间与摩擦系数的关系式,比较与时t相同求解。题图217解:(1)其沿斜面向下的加速度为: 又,则:(2)又时,时,又,则:218,如图2-18所示,用一穿过光滑桌面小孔的轻绳,将放在桌面上的质点m与悬挂着的质点M连接起来,m在桌面上作匀速率圆周运动
13、,问m在桌面上圆周运动的速率v和圆周半径r满足什么关系时,才能使M静止不动?分析:绳子的张力为质点m提供向心力时,M静止不动。题图218解:如图218,以M为研究对象,有:以m为研究对象,水平方向上,有:又有:由、可得:2-19一质量为0.15kg的棒球以的水平速度飞来,被棒打击后,速度与原来方向成1350角,大小为。如果棒与球的接触时间为0.02s,求棒对球的平均打击力大小及方向。分析:通过动量定理求出棒对球在初速方向与垂直初速方向的平均打击力,再合成求平均力及方向。解:在初速度方向上,由动量定理有: 在和初速度垂直的方向上,由动量定理有: 又由带入数据得:arctan角2-20. 将一空盒
14、放在秤盘上,并将秤的读数调整到零,然后从高出盒底将小钢珠以每秒B个的速率由静止开始掉入盒内,设每一个小钢珠的质量为m,若钢珠与盒底碰撞后即静止,试求自钢珠落入盒内起,经过秒后秤的读数。分析:秤的读数是已落在盒里石子的重量与石子下落给秤盘平均冲力之和,平均冲力可由动量定律求得。解:对在dt的时间内落下的钢珠,由动量定理: 所以t秒后秤的读数为: 2-21. 两质量均为M的冰车头尾相接地静止在光滑的水平冰面上,一质量为m的人从一车跳到另一车上,然后再跳回,试证明,两冰车的末速度之比为/。分析:系统动量守恒。解:任意t时刻,由系统的动量守恒有:所以两冰车的末速度之比: 2-22. 质量为3.0kg的
15、木块静止在水平桌面上,质量为5.0g的子弹沿水平方向射进木块。两者合在一起,在桌面上滑动25cm后停止。木块与桌面的摩擦系数为0.20,试求子弹原来的速度。分析:由动量守恒、动能定理求解。解:在子弹沿水平方向射进木块的过程中,由系统的动量守恒有:一起在桌面上滑动的过程中,由系统的动能定理有:由带入数据有: 2-23. 光滑水平平面上有两个物体A和B,质量分别为、。当它们分别置于一个轻弹簧的两端,经双手压缩后由静止突然释放,然后各自以vA、vB的速度作惯性运动。试证明分开之后,两物体的动能之比为: 。分析:系统的动量守恒。解:由系统的动量守恒有:所以 物体的动能之比为: 2-24如图2-24所示
16、,一个固定的光滑斜面,倾角为,有一个质量为m小物体,从高H处沿斜面自由下滑,滑到斜面底C点之后,继续沿水平面平稳地滑行。设m所滑过的路程全是光滑无摩擦的,试求:(1)m到达C点瞬间的速度;(2)m离开C点的速度;(3)m在C点的动量损失。题图224分析:机械能守恒,C点水平方向动量守恒,C 点竖直方向动量损失。解:(1)由机械能守恒有:带入数据得,方向沿AC方向(2)由于物体在水平方向上动量守恒,所以,得:方向沿CD方向。(3)由于受到竖直的冲力作用,m在C点损失的动量:,方向竖直向下。2-25质量为m的物体,由水平面上点O以初速度v0抛出,v0与水平面成仰角。若不计空气阻力,求:(1)物体从
17、发射点O到最高点的过程中,重力的冲量;(2)物体从发射点落回至同一水平的过程中,重力的冲量。分析:竖直方向由动量定力理求重力冲量。最高点竖直方向速度为零。落回到与发射点同一水平面时,竖直方向的速度与发射时竖直的方向速度大小相等,方向相反。解:(1)在竖直方向上只受到重力的作用,由动量定理有:,得,方向竖直向下。(2)由于上升和下落的时间相等,物体从发射点落回至同一水平面的过程中,重力的冲量:,方向竖直向下。2-26如图所示,在水平地面上,有一横截面的直角弯管,管中有流速为的水通过,求弯管所受力的大小和方向。题图226分析:对于水竖直方向、水平方向分别用动量定理求冲力分量,弯管所受力大小为水所受
18、的冲力合力。解:对于水,在竖直方向上,由动量定理有: 在水平方向上,由动量定理有:由牛顿第三定律得弯管所受力的大小:由带入数据得F=2500N,方向沿直角平分线指向弯管外侧。题图227227一个质量为50g的小球以速率作平面匀速圆周运动,在1/4周期内向心力给它的冲量是多大?分析:画矢量图,利用动量定理求冲量。解:由题图227可得向心力给物体的冲量大小:228自动步枪连续发射时,每分钟射出120发子弹,每发子弹的质量为7.90g,出口速率,求射击时枪托对肩膀的平均冲力。分析:由动量定理及牛顿定律求解。解:由题意知枪每秒射出2发子弹,则由动量定理有:由牛顿第三定律有:枪托对肩膀的平均冲力 题图2
19、29LI229. 如图2-29所示,已知绳能承受的最大拉力为9.8N,小球的质量为0.5kg,绳长0.3m,水平冲量I等于多大时才能把绳子拉断(设小球原来静止)。分析:由动量定理及牛顿第二定律求解。解:由动量定理有: 由牛顿第二定律有:由带入数据得:230. 质量为M的木块静止在光滑的水平面桌面上,质量为,速度为的子弹水平地射入木块,并陷在木块内与木块一起运动。求(1)子弹相对木块静止后,木块的速度和动量;(2)子弹相对木块静止后,子弹的动量;(3)在这个过程中,子弹施于木块的冲量。分析:由木块、子弹为系统水平方向动量守恒,可求解木块的速度和动量。由动量定理求解子弹施于木块的冲量。解:(1)由
20、于系统在水平方向上不受外力,则由动量守恒定律有:所以木块的速度:,动量:(2)子弹的动量: (3)对木块由动量定理有: 231一件行李的质量为m,垂直地轻放在水平传送带上,传送带的速率为v,它与行李间的摩擦系数为,(1)行李在传送带上滑动多长时间?(2)行李在这段时间内运动多远?分析:由动量定理求滑动时间,由牛顿定律、运动方程求出距离。解:(1)对行李由动量定理有: 得:(2)行李在这段时间内运动的距离,由:,232体重为p的人拿着重为的物体跳远,起跳仰角为,初速度为,到达最高点该人将手中物体以水平向后的相对速度u抛出,问跳远成绩因此增加多少?分析:以人和物体为一个系统,系统在水平方向上不受外
21、力作用,因此系统在水平方向上动量守恒。动量守恒中涉及的速度都要相对同一参考系统。解:在最高点由系统动量守恒定律有: 增加成绩 由可得:233. 质量为m的一只狗,站在质量为M的一条静止在湖面的船上,船头垂直指向岸边,狗与岸边的距离为S0这只狗向着湖岸在船上走过的距离停下来,求这时狗离湖岸的距离S(忽略船与水的摩擦阻力) 分析:以船和狗为一个系统,水平方向动量守恒。注意:动量守恒中涉及的速度都要相对同一参考系统。解:设V为船对岸的速度,u为狗对船的速度,由于忽略船所受水的阻力,狗与船组成的系统水平方向动量守恒: 即: 船走过的路程为: 狗离岸的距离为: 2-34设。(1)当一质点从原点运动到时,
22、求所作的功;(2)如果质点到处时需0.6s,试求的平均功率;(3)如果质点的质量为1kg,试求动能的变化。 分析:由功、平均功率的定义及动能定理求解,注意:外力作的功为F所作的功与重力作的功之和。解:(1) ,做负功(2)(3) = -45+ = -85J235一辆卡车能沿着斜坡以的速率向上行驶,斜坡与水平面夹角的正切,所受的阻力等于卡车重量的0.04,如果卡车以同样的功率匀速下坡,则卡车的速率是多少? 分析:求出卡车沿斜坡方向受的牵引力,再求瞬时功率。注意:F、V同方向。解:,且题图235上坡时,下坡时,由于上坡和下坡时功率相同,故所以题图236ABNOr236某物块质量为P,用一与墙垂直的
23、压力使其压紧在墙上,墙与物块间的滑动摩擦系数为,试计算物块沿题图所示的不同路径:弦AB,圆弧AB,折线AOB由A移动到B时,重力和摩擦力作的功。已知圆弧半径为r。 分析:保守力作功与路径无关,非保守力作功与路径有关。解:重力是保守力,而摩擦力是非保守力,其大小为。(1)物块沿弦AB由A移动到B时,重力的功摩擦力的功(2)物块沿圆弧AB由A移动到B时,重力的功摩擦力的功(3)物块沿折线AOB由A移动到B时,重力的功。摩擦力的功题图2-372-37求把水从面积为的地下室中抽到街道上来所需作的功。已知水深为1.5m,水面至街道的竖直距离为5m。 分析:由功的定义求解,先求元功再积分。解:如图以地下室
24、的O为原点,取X坐标轴向上为正,建立如图坐标轴。选一体元,则其质量为。把从地下室中抽到街道上来所需作的功为 故2-38质量为m的物体置于桌面上并与轻弹簧相连,最初m处于使弹簧既未压缩也未伸长的位置,并以速度向右运动,弹簧的劲度系数为,物体与支承面间的滑动摩擦系数为,求物体能达到的最远距离。 分析:由能量守恒求解。m题图2-38解:设物体能达到的最远距离为根据能量守恒,有即:解得239一质量为m、总长为的匀质铁链,开始时有一半放在光滑的桌面上,而另一半下垂。试求铁链滑离桌面边缘时重力所作的功。分析:分段分析,对OA段取线元积分求功,对OB段为整体重力在中心求功。题图239解:建立如图坐标轴选一线
25、元,则其质量为。铁链滑离桌面边缘过程中,的重力作的功为OB的重力的功为故总功2-40一辆小汽车,以的速度运动,受到的空气阻力近似与速率的平方成正比,A为常数,且。(1)如小汽车以的恒定速率行驶1km,求空气阻力所作的功;(2)问保持该速率,必须提供多大的功率? 分析:由功的定义及瞬时功率求解。解:(1)故则2-41一沿x轴正方向的力作用在一质量为3.0kg的质点上。已知质点的运动方程为,这里以m为单位,时间以s为单位。试求:(1)力在最初内作的功;(2)在时,力的瞬时功率。 分析:由速度、加速度定义、功能原理、牛顿第二定律求解。解:则 由功能原理,有(2)时,则瞬时功率242.以铁锤将一铁钉击
26、入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,若铁锤击第一次时,能将小钉击入木板内1cm,问击第二次时能击入多深?(假定铁锤两次打击铁钉时的速度相同。) 分析:根据功能原理,因铁锤两次打击铁釘时速度相同,所以两次阻力的功相等。注意:阻力是变力。解:设铁钉进入木板内时,木板对铁钉的阻力为由于铁锤两次打击铁钉时的速度相同,故所以,。第二次时能击入深。243从地面上以一定角度发射地球卫星,发射速度应为多大才能使卫星在距地心半径为r的圆轨道上运转? 分析:地面附近万有引力即为重力,卫星圆周运动时,万有引力提供的向心力,能量守恒。解:设卫星在距地心半径为r的圆轨道上运转速度为v, 地球质量为M
27、, 半径为,卫星质量为m.根据能量守恒,有又由卫星圆周运动的向心力为卫星在地面附近的万有引力即其重力,故联立以上三式,得244一轻弹簧的劲度系数为,用手推一质量的物体A把弹簧压缩到离平衡位置为处,如图2-44所示。放手后,物体沿水平面移动距离而停止,求物体与水平面间的滑动摩擦系数。 分析:系统机械能守恒。 解:物体沿水平面移动过程中,由于摩擦力做负功,致使系统(物体与弹簧)的弹性势能全部转化为内能(摩擦生热)。根据能量关系,有题图245所以,题图244245一质量的物体A,自处落到弹簧上。当弹簧从原长向下压缩时,物体再被弹回,试求弹簧弹回至下压时物体的速度。 分析:系统机械能守恒。解:设弹簧下
28、压时物体的速度为v。把物体和弹簧看作一个系统,整体系统机械能守恒,选弹簧从原长向下压缩的位置为重力势能的零点。当弹簧从原长向下压缩时,重力势能完全转化为弹性势能,即当弹簧下压时,所以,246长度为的轻绳一端固定,一端系一质量为m的小球,绳的悬挂点正下方距悬挂点的距离为d处有一钉子。小球从水平位置无初速释放,欲使球在以钉子为中心的圆周上绕一圈,试证d至少为。 分析:小球在运动过程中机械能守恒;考虑到小球绕O点能完成圆周运动,因此小球在圆周运动的最高点所受的向心力应大于或等于重力。证:小球运动过程中机械能守恒,选择小球最低位置为重力势能的零点。设小球在A处时速度为v,则:又小球在A处时向心力为:
29、其中,绳张力为0时等号成立。联立以上两式,解得题图246题图247247弹簧下面悬挂着质量分别为、的两个物体,开始时它们都处于静止状态。突然把与的连线剪断后,的最大速率是多少?设弹簧的劲度系数,而。分析:把弹簧与看作一个系统。当与的连线剪断后,系统作简谐振动,机械能守恒。解:设连线剪断前时弹簧的伸长为x,取此位置为重力势能的零点。系统达到平衡位置时弹簧的伸长为,根据胡克定律,有系统达到平衡位置时,速度最大,设为。由机械能守恒,得联立两式,解之:248一人从10 m深的井中提水起始时桶中装有10 kg的水,桶的质量为1 kg,由于水桶漏水,每升高1 m要漏去0.2 kg的水求水桶匀速地从井中提到
30、井口,人所作的功 分析:由于水桶漏水,人所用的拉力F是变力,变力作功。解:选竖直向上为坐标y轴的正方向,井中水面处为原点. 由题意知,人匀速提水,所以人所用的拉力F等于水桶的重量即: 人的拉力所作的功为: 2-49地球质量为,地球与太阳相距,视地球为质点,它绕太阳作圆周运动,求地球对于圆轨道中心的角动量。 分析:太阳绕地球一周365天,换成秒为,用质点角动量定义求解。解:2-50我国发射的第一颗人造地球卫星近地点高度,远地点高度,地球半径,求卫星在近地点和远地点的速度之比。分析:卫星绕地球运动时角动量守恒。解:所以2-51一个具有单位质量的质点在力场中运动,其中t是时间,设该质点在时位于原点,
31、且速度为零,求s时该质点受到的对原点的力矩和该质点对原点的角动量。 分析:由牛顿定律、力矩、角动量定义求解。解:对质点由牛顿第二律有 又因为所以得同样由 得所以t=2时 2-52. 一质量为m的粒子位于(x, y)处,速度为,并受到一个沿x方向的力f,求它相对于坐标原点的角动量和作用在其上的力矩。分析:由质点力矩、角动量定义求解解:2-53电子的质量为,在半径为的圆周上绕氢核作匀速率运动。已知电子的角动量为(h为普朗克常量, ,求其角速度。分析:由角动量定义求解。解:由2-54在光滑的水平桌面上,用一根长为的绳子把一质量为m的质点联结到一固定点O. 起初,绳子是松弛的,质点以恒定速率沿一直线运
32、动。质点与O最接近的距离为b,当此质点与O的距离达到时,绳子就绷紧了,进入一个以O为中心的圆形轨道。(1)求此质点的最终动能与初始动能之比。能量到哪里去了?(2)当质点作匀速圆周运动以后的某个时刻,绳子突然断了,它将如何运动,绳断后质点对O的角动量如何变化? 分析:绳子绷紧时,质点角动量守恒。解:(1)当质点做圆周运动时,可得其速度所以最终动能与初始动能之比,其他能量转变为绳子的弹性势能,以后转化为分子内能.(2)绳子断后,质点将按速度沿切线方向飞出,做匀速直线运动质点对0点的角动量恒量。2-55 如题图2-55所示,质量分别为m1和m2的两只球,用弹簧连在一起,且以长为L1的线拴在轴O上,m
33、1与m2均以角速度绕轴在光滑水平面上作匀速圆周运动当两球之间的距离为L2时,将线烧断试求线被烧断的瞬间两球的加速度和(弹簧和线的质量忽略不计) 分析:未断时,球2受的弹性力为圆周运动的向心力,线断瞬间弹性力不变仍为球2受的弹性力;该力使M1、M2 产生加速度。解:未断时对球2有弹性力 题图2-55L2L1wm1m2O线断瞬间对球1有弹性力 对球2有弹性力 解得 2-56A、B两个人溜冰,他们的质量各为70kg,各以的速率在相距1.5m的平行线上相对滑行。当他们要相遇而过时,两人互相拉起手,因而绕他们的对称中心作圆周运动,如图2-56所示,将此二人作为一个系统,求:1.5mAB题图2-56(1)该系统的总动量和总角动量;(2)求开始作圆周运动时的角速度分析:两人速度大小相等、方向相反。解:(1)系统的总动量总角动量(2)2-57人造地球卫星绕地球中心做椭圆轨道运动,若不计空气阻力和其它星球的作用,在卫星运行过程中,卫星的动量和它对地心的角动量都守恒吗?为什么?分析:由守恒条件回答。 答:人造卫星的动量不守恒,因为它总是受到外力地球引力的作用人造卫星对地心的角动量守恒,因为它所受的地球引力通过地心,而此力对地心的力矩为零。