1、6.3二元一次方程组的应用第二课时,蝉房中学,利用二元一次方程组解决问题的基本过程,实际问题,实际问题 的答案,审,设,列,解,验,答,例2去年秋季,某校七年级和高一年级招生总人数为500人,计划今年秋季七年级招生人数增加20%,高中人数增加15%,这样,今年秋季七年级和高中一年级招生总人数将比去年增加18%,今年秋季七年级和高中一年级各计划招生多少人?,去年七年级人数+去年高一年级人数=500 今年七年级人数+今年高一年级人数= 500(1+ 18%),问题:题目中包含哪两个等量关系?,解:设今年七年级招生人数为a人,高中一年级招生人数为b人.根据题意, 得,例2去年秋季,某校七年级和高一年
2、级招生总人数为500人,计划今年秋季七年级招生人数增加20%,高中人数增加15%,这样,今年秋季七年级和高中一年级招生总人数将比去年增加18%,今年秋季七年级和高中一年级各计划招生多少人?,探究,小明为了测得火车过桥时的速度和火车的长度,在一铁路桥旁进行观察,火车从开始上桥到完全过桥共用1min,整列火车完全在桥上的时间为40s。已知桥长1500m,你能根据小明测得的数据求出火车的速度和长度吗?,桥长,车长,+,列车从车头上桥,到车尾离开,所走过的路程是桥长+车长。,所走路程=,列车从车头上桥,到车尾离开,所走过的路程是什么?,分析,列车过桥问题研究的是速度、路程和时间的关系,列车从车尾上桥,
3、到车头离开,所走过的路程是什么?,桥长,车长,所走路程=,列车从车尾上桥,到车头离开,所走过的路程是桥长车长。,分析,1500+y=60x,1500-y=40x,60x,40x,若设火车的速度为xm/s,火车的长度为ym,用线段表示大桥和火车的长度,如下示意图:,火车1min内所行路程=桥长+火车长,火车40s内所行路程=桥长-火车长,小明为了测得火车过桥时的速度和火车的长度,在一铁路桥旁进行观察,火车从开始上桥到完全过桥共用1min,整列火车完全在桥上的时间为40s。已知桥长1500m,你能根据小明测得的数据求出火车的速度和长度吗?,小明为了测得火车过桥时的速度和火车的长度,在一铁路桥旁进行
4、观察,火车从开始上桥到完全过桥共用1min,整列火车完全在桥上的时间为40s。已知桥长1500m,你能根据小明测得的数据求出火车的速度和长度吗?,解:设火车的速度为xm/s,火车的长度为ym,根据题意,得解这个方程组,得答:火车的速度为30m/s,火车的长度为300m。,解答,1、某公司甲、乙两个销售点1月份的总销售额为50000元。2月份,甲销售点的销售额比1月份增加了5%,乙销售点的销售额比1月份增加了7.5%。这样,两个销售点2月份比1月份共增加销售额3000元。两个销售点1月份的销售额分别是多少?,练习,2、甲、乙两车相距100km,两车同时出发。如果同向而行, 乙车经过4h可追上甲车;如果相向而行,两车经过0.8h相遇。 求甲乙两车的速度。,