1、二元一次方程(组)习题课,知识目标: 1、使学生进一步理解二 元一次方程(组)的定义。 2、巩固二元一次方程(组) 解的定义及解法。,一、由二元一次方程的概念求值 例1、(a3)x a -2 (b1)y b2 =0 是二元一次方程。求a2 b2 的值。,解:根据题意得:a 21且a30b2 1且b10 a-3、b-1当 a-3、b-1时a2 b2 8,想一想,试一试,二、由解求方程 例2、如果 x2 和 x4满足同一个二 y3 y2 元一次方程,你能求出这个二元一次方程吗?,思考与分析:首先我们看清题意:满足同一个二元一次方程而不是满足同一个二元一次方程组,然后我们根据二元一次方程的表达式设二
2、元一次方程为:axbyc(a0 b0),再把给出的两组解代入求出二元一次方程的 系数及常数项。,解:设所求的二元一次方程为:axbyc(a0、b0)依题意得: 2a3bc 4a2bc 得到 b2a0,所以b2a32可得 8ac所以我们可以得到 b2ac8a 于是 ax2ay8a。因为 a0 ,所以这个二元一次方程为:x2y8,你解对了吗?,比一比,三、000型方程 例3、3a2b7 (5a2b1)20 求2ab的值。,解:根据题意得:3a2b70 5a2b10 解得 a-1b-2当a-1、b-2时2ab2(-1)2-4,做一做,四、互换方程求值 例4、已知关于x、y方程组 2x3y3 axby
3、-1 和 3x2y11 的解相同,求a、b的值 。 2ax3by3,思考与分析:方程组 2x3y3和 3x2y11 中都axby-1 2ax3by3含a、b ,不能直接解,又知道它们的解相同,也就是说x、y都满足这四个方程,由此我们可把方程2x3y3和3x2y11联立起来形成新的方程组,把axby-1和2ax3by3联立形成新的方程组,我们用消元法解出 2x3y3 的x、y的值代入 axby-1 3x2y11 2ax3by3即可得到关于a、b的二元一次方程组,解此方程组即可得到a、b的值。,解: 2x3y=3 解得 x33x2y11 y1把 x3 代入 axby-1y1 2ax3by3得 3ab-16a3b3化简得 3ab-1 解得 a-22ab1 b5所以a、b的值分别为-2和5。,我能行,课堂小结:请同学们谈本节的收获与困惑?,说一说,作业:第10期报纸 1、A3找特点求解 2、A5多种方法求K值,议一议,再见,