1、二次根式的运算知识考点:二次根式的化简与运算是二次根式这一节的重点和难点。也是学习其它数学知识的基础,应熟练掌握利用积和商的算术平方根的性质及分母有理化的方法化简二次根式,并能熟练进行二次根式的混合运算。精典例题:【例 1】计算:(1) ;321432(2) ;188(3) ;205452152010 (4) ;33(5) 。100 2126sin 答案:(1) ;(2) ;(3)2002;(4) ;(5)134 62【例 2】化简: baab分析:将 和 分别分母有理化后再进行计算,也可将除以 变 a ab为乘以 ,与括号里各式进行计算,从而原式可化为:b1原式 0baa11【例 3】已知
2、, ,求 的值。3ab分析:直接代入求值比较麻烦,可考虑把代数式化简再求值,并且 、 的值的分ab母是两个根式,且互为有理化因式,故 必然简洁且不含根式, 的值也可以求出ab来。解:由已知得: ,ba21321ab原式 探索与创新:【问题一】比较 与 的大小; 与 的大小;231342与 的大小;猜想 与 的大小关系,并证明你45n1的结论。分析:先将各式的近似值求出来,再比较大小。 1.7321.4140.318, 1.41410. 414232 同理: , 43453根据以上各式二次根式的大小有理由猜测: n11证明: n1n1 122 n1n122n 1n又 n1 1n【问题二】阅读此题
3、的解答过程,化简:( )abba3224ba20解:原式 )4(22 2)(ab abba2问:(1)上述解题过程中,从哪一步开始出现错误,请填写出该步的代号 ;(2)错误的原因是 ;(3)本题的正确结论是 。分析:此题是阅读形式的题,要找出错误的原因,错误容易产生在由根式变为绝对值,绝对值再化简出来这两步,所以在这两步特别要注意观察阅读。解:(1);(2)化简 时,忽视了 0 的条件;(3)ba2ba2ab跟踪训练:一、选择题:1、下列各式正确的是( )A、 ab2B、 ( 0, 0)324baC、 的绝对值是2D、 1313aa2、下列各式中与 ( )是同类二次根式的是( )24A、 B、
4、 C、 D、3)( )24(3a2a12a3、下列等式或说法中正确的个数是( ) ;ba2 的一个有理化因式是 ;a2 ;5943271 ; 。54152A、0 个 B、1 个 C、2 个 D、3 个4、已知 , ,则 与 的关系是( )23a23babA、 B、 C、 D、ba11ab5、下列运算正确的是( )A、 B、32 21C、 D、0 608335二、填空题:1、比较大小: ; 。655213172、计算: ; ;487 213 ; ;1025a34 ; 349 102 )3(2.1)5( 。 ; 22)()3( 201201)54()4(。3、请你观察思考下列计算过程: 121 3
5、23因此猜想: 。765489三、化简题:1、 ; 2、 ;)3)(2( xyyxy133、 。3210cos6tan3)1(2)31(800 x四、已知 ,求 的值。231x 212xx五、计算: 。10943121 六、先化简,再求值: ,其中 。aa2211321七、已知 ( ) ,ax10求代数式 的值。xxx423622 参考答案一、选择题:CACBD二、填空题:1、,;2、36, , , , ,1, ,1;2710a29645623、111 111 111;三、化简题:1、 ;2、 ;3、52xy14四、 34五、原式 )910()34()2()1( 09六、3七、 ax1 ,即2ax1 ,即1)(ax 222 14ax原式 2