1、分式方程的应用,复习:,解分式方程的一般步骤是什么?,分式方程,整式方程,x=a,a不是分式 方程的解,a是分式 方程的解,最简公分母不为0,最简公分母为0,检验,解整式方程,去分母,目标,解方程,解:方程两边都乘以 (x+1) ( x 1 ) , 得,( x + 1 )24 = x21,解得,x = 1,检验: x = 1 时(x+1)(x-1)=0,x=1不是原分式方程的解.,原方程无解.,解分式方程的一般步骤:,1. 在方程的两边都 乘以最简公分母,约去分母,化成整式方程.2. 解这个整式方程.3. 把整式方程的根代入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须
2、舍去.4. 写出原方程的根.,解方程,例1、一项工程,若甲单独做,刚好在规定日期内完成,若乙单做,则要超过规定时间6天完成;现甲乙两人合作4天后,剩下工程由乙 单独做,刚好在规定日期内完成。问规定日期是几天?,分析:设工作总量为1,工效 X 工时= 工作量,设规定日期为 x 天,则甲乙单完成各需x天、(x+6)天,甲乙,的工效分别为,(1)、相等关系:甲乙合做4天的量+乙单独做(x-4)天的量=总量1,列出方程:,(2)、相等关系:甲 做工作量+乙做工作量=1,列出方程得:,例1、一项工程,若甲单独做,刚好在规定日期内完成,苦乙单做,则要超过规定时间6天完成;现甲乙两人合作4天后,剩下工程由乙
3、 单独做,刚好在规定日期内完成。问规定日期是几天?,解:设规定日期为x天,根据题意得,解得 x=12, 经检验,x=12是原方程的解。 答:规定日期是12天。,【例2】两个工程队共同参与一项筑路工程,甲队单独施工一个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成. 哪个队的施工速度快?,分式方程在实际在应用,解:,设乙队如果单独施工一个月能完成总工程的 .,记总工程量为1,根据题意,得,= 1,解之得:,经检验知 x = 1 是原方程的解.,由上可知,若乙队单独工作一个月可以完成全部任务, 所以乙队施工速度快.,1.列分式方程解应用题与列一元一次方程解应用题的方
4、法与步骤基本相同,不同点是,解分式方程必须要验根.一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意.原方程的增根和不符合题意的根都应舍去.2.列分式方程解应用题,一般是求什么量,就设所求的量为未知数,这种设未知数的方法,叫做设直接未知数.但有时可根据题目特点不直接设题目所求的量为未知量,而是设另外的量为未知量,这种设未知数的方法叫做设间接未知数.在列分式方程解应用题时,设间接未知数,有时可使解答变得简捷.,【例3】 甲、乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做90个零件所用的时间和乙做60个零件所用时间相等,求甲、乙每小时各做多少个零件?,解:设甲每小时做x个零件则乙
5、每小时做( x 6)个零件,依题意得:,经检验X=18是原方程的根。,答:甲每小时做18个,乙每小时12个,请审题分析题意 设元,我们所列的是一个分式方程,这是分式方程的应用,由x18得x6=12,等量关系:甲用时间=乙用时间,【例4】从2004年5月起某列车平均提速v千米/小时,用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度为多少?,解:设提速前的速度为x,提速后为x+v,则,解得,【例5】某单位将沿街的一部分房屋出租,每间房屋的租金第二年比第一年多500元,所有房屋的租金第一年为9.6万元,第二年为10.2万元.(1).分别求两年每间出租房屋的租金?
6、 (2).求出租房屋的总间数?,解:设第一年每间房屋的租金为x元.,解:设共有x间出租房.,【例6】.某市从今年1月1日起调整居民用水价格,每吨水费上涨三分之一,小丽家去年12月的水费是15元,今年2月的水费是30元.已知今年2月的用水量比去年12月的用水量多5吨,求该市今年居民用水的价格?,解:设该市去年用水的价格为x元/吨.,解得 x=1.5 检验x=1.5, 是原方程的根. 1.54/3=2(元) 答:该市今年居民用水的价格为2元/吨,例7、甲乙两人 分别骑摩托车从A、B两地相向而行,甲先行1小时之后,乙才出以,又经过4小时,两人在途中的C地相遇,相遇后,两人按原来的方向继续前行,乙在由
7、C地到A地的途中因故停了20分钟,结果乙由C地到A地时,比甲由C地到B地还提前了40分钟,已知乙比甲每小时多行4千米,求甲乙两车的速度。,分析:本题把时间作为考虑的着眼点。设甲的速度为 x 千米/时1)、相等关系:乙的时间=甲的时间,2)、乙用的时间=,3)、甲用的时间=,例7、甲乙两人 分别骑摩托车从A、B两地相向而行,甲先行1小时之后,乙才出以,又经过4小时,两人在途中的C地相遇,相遇后,两人按原来的方向继续前行,乙在由C地到A地的途中因故停了20分钟,结果乙由C地到A地时,比甲由C地到B地还提前了40分钟,已知乙比甲每小时多行4千米,求甲乙两车的速度。,解:设甲每小时行驶x千米,那么乙每
8、小时行驶(x+4)千米根据题意,得,解之得, x1=16, x2= - 2, 都是原方程的根但x= - 2 不合题意,舍去,所以x=16时, x+4=20,答:甲车的速度为16千米/小时,乙车的速度为20千米/小时。,1.填空:(1)一件工作甲单独做要m小时完成,乙单独做要n小时完成,如果两人合做,完成这件工作的时间是_小时;(2)某食堂有米m公斤,原计划每天用粮a公斤,现在每天节约用粮b公斤,则可以比原计划多用天数是_;(3)把a千克的盐溶在b千克的水中,那么在m千克这种盐水中的含盐量为_千克.,练一练,练一练,2、甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工
9、5个零件,求两人每小时各加工的零件个数.,解:设乙每小时加工x个,甲每小时加工(x-5)个,则,解得x=20,检验:x=20时x(x-5) 0,x=20是原分式方程的解。,答:乙每小时加工20个,甲每小时加工15个。,x-5=15,3、某工人师傅先后两次加工零件各1500个,当第二次加工时,他革新了工具,改进了操作方法,结果比第一次少用了18个小时.已知他第二次加工效率是第一次的2.5倍,求他第二次加工时每小时加工多少零件?,练一练,解:设他第一次每小时加工x个,第二次每小时加 工2.5x个,则,4、一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校
10、出发,按原路追赶队伍.若骑车的速度是队伍行进速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?,练一练,解:设队伍的速度为x,骑车的速度为2x,则,解得x=15,经检验x=15是原方程的解。,答:这名学生追上队伍用了0.5小时。,练一练,5、某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时?,解:设步行每小时行x千米,骑车每小时行(x+8)千米,则,解得x=4,404=10(小时),经检验x=4是方程的解。,答:他步行40千米用10个小时。,练一练,6、A,B两地相距135千
11、米,两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知小汽车与大汽车的速度之比是5:2,求两辆汽车各自的速度.,解:设小汽车的速度为5x,大汽车的速度为2x,则,解得x=9,经检验x=9是方程的解。,59=45 29=18,答:小车每小时行45千米,大车每小时行18千米。,练一练,7、已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?,解:设水流的速度为x,则,练习8:某农场开挖一条长960米的渠道,开工后工作效率比计划提高50%,结果提前4天完成任务。原计划每天挖多
12、少米?,解:设原计划每天挖x米,则实际每天挖 _ _ 米。,x(1+50%),每天比计划多挖50%,练习9:甲、乙二人同时从张庄出发,步行15千米到李庄。甲比乙每小时多走1千米,结果比乙早到半小时。二人每小时各走多少千米?,解:设甲速度为x千米/时,则乙速度为_千米/时,(x-1),1、 甲、乙两人练习骑自行车,已知甲每小时比乙多走6千米,甲骑90千米所用的时间和乙起骑60千米所用时间相等,求甲、乙每小时各骑多少千米?,2、甲、乙两种商品,已知甲的价格每件比乙多6元,买甲90件所用的钱和买乙60件所用钱相等,求甲、乙每件商品的价格各多少元?,试一试,议一议,1. 甲、乙两人做某种机器零件,已知
13、甲每小时比乙多做6个,甲做90个零件所用的时间和乙做60个零件所用时间相等,求甲、乙每小时各做多少个零件?,2. 甲、乙两人练习骑自行车,已知甲每小时比乙多走6千米,甲骑90千米所用的时间和乙起骑60千米所用时间相等,求甲、乙每小时各骑多少千米?,3.甲、乙两种商品,已知甲的价格每件比乙多6元,买甲90件所用的钱和买乙60件所用钱相等,求甲、乙每件商品的价格各多少元?,有什么区别和联系?,联系,数量关系和所列方程相同,即:两个量的积等于第三个量,区别,一是工作问题,二是行程问题,三是价格问题,1、审题 ; 2、设未知数;,列分式方程解应用题的一般步骤,3、找出能表示题目全部含意的相等关系,列出
14、分式方程;,4、解分式方程;,5、验根:先检验是否有增根,再检查是否合符题意;,6、写出答案。,小结,补充练习,1、一项工程,需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队独做,就要超过规定3天,现在由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成,问规定日期是几天?,2、把多边形的边数增加1 倍得到一个新多边形,原多边形内角和是新多边形内角和的0.4。求原多边形的边数n应满足的方程。n是多少?,3、购一年期债券,到期后本利只获2700元,如果债券年利率12.5%,那么利息是多少元?,4、骑自行车翻越一个坡地,上坡1千米,下坡1千米,如果上坡的速度是25千米/时,那么下坡要保持什么速度才能使全程的平均速度是30千米/时?,5、解一组方程,先用小计算器解20分钟,再改用大计算器解25分钟可解完,如果大计算器的运算速度是小计算器的4倍,并用计算器解这组方程需多少时间?,6、甲、乙两列车分别从相距300千米的A、B两站同时相向而行。相遇后,甲车再经过2小时到达B站,乙车再经过4小时30分到达A站,求甲、乙两车的速度。,