1、 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http:/第 28 卷 第 4 期2 0 0 9 年 1 2 月计 算 技 术 与 自 动 化Computing Technology and AutomationVol1 28 ,No1 4Dec. 2 0 0 9收 稿 日 期 :2009 - 03 - 30作 者 简 介 :马 春 梅 ( 1978 ) ,女 ,山 东 乳 山 人 ,讲 师 ,研 究 方 向 :数 字 图 像 处 理 、 图 像 检 索 等 ( E - m
2、ail : rsmcm 163. com) ;赵 景 秀(1968 ) ,男 ,山 东 泰 安 人 ,副 教 授 ,硕 士 ,研 究 方 向 :图 形 图 像 处 理 、 图 像 检 索 、 人 工 智 能 等 。文 章 编 号 :1003 - 6199 (2009) 04 - 0103 - 04一 种 新 的 基 于 小 波 变 换 的 边 缘 检 测 算 法马 春 梅 ,赵 景 秀(曲 阜 师 范 大 学 计 算 机 科 学 学 院 ,山 东 日 照 276826)摘 要 :应 用 小 波 变 换 理 论 对 图 像 进 行 平 滑 降 噪 处 理 ,对 降 噪 图 像 进 行 多 级 小
3、 波 分 解 ,从 而 获 取 多 分 辨率 图 像 。 对 小 波 分 解 的 各 级 小 波 系 数 求 其 局 部 模 极 大 值 ,从 而 得 到 不 同 分 辨 率 下 的 图 像 边 缘 ,合 并 不 同 分辨 率 下 的 图 像 边 缘 得 到 一 个 组 合 边 缘 ,细 化 图 像 边 缘 。 实 验 证 明 ,这 种 方 法 对 有 噪 声 污 染 的 图 像 进 行 边 缘检 测 效 果 好 于 Lo G、 Sobel、 Canny 等 经 典 的 边 缘 检 测 方 法 。关 键 词 :边 缘 检 测 ;小 波 变 换 ;多 分 辨 率 分 析 ;多 尺 度中 图 分
4、类 号 : TP391 文 献 标 识 码 :AA Ne w Edge Detection Method Based - on Wavelet TransformMA Chun2mei ,ZHAO Jing2xiu(Computer and Science College , QU FU Normal University , Rizhao 276826 ,China)Abstract :By using the wavelet transform theory to smooth and de - noise image. Secondly , decompose the de - nois
5、edimage multilevel and get multi - resolution images. Thirdly , evaluate the local modulus maximum of wavelet coefficients thusget image edge under different resolution. Then , merge the edge of multi - resolution images and obtain a combined edge.J udge and find the best edge using a thinning algor
6、ithm. The experiments prove that the algorithm is better than Lo G opera2tor , Sobel operator and Canny operator to detect noised image edge.Key words :edge detection ; wavelet transform ; multi - resolution analysis ; multi - scale1 引 言图 像 边 缘 是 图 像 中 最 基 本 的 特 征 之 一 ,是 图 像理 解 与 分 析 的 基 础 。 图 像 边 缘
7、 检 测 在 计 算 机 视 觉研 究 中 占 有 重 要 地 位 ,是 数 字 图 像 分 析 处 理 的 前提 ,检 测 结 果 的 优 劣 将 直 接 影 响 到 计 算 机 视 觉 系 统对 客 观 世 界 的 理 解 。 边 缘 检 测 一 直 是 计 算 机 视 觉和 图 像 处 理 领 域 中 经 典 的 研 究 课 题 之 一 。 边 缘 检测 方 法 主 要 有 空 域 检 测 和 变 换 域 检 测 两 大 类 。 经典 边 缘 检 测 是 基 于 空 间 域 的 ,主 要 有 一 阶 微 分 梯 度法 和 二 阶 微 分 法 , 如 Robert s1 、 Sobel 2
8、 、 Pre2witt 3 、 Kirsch4 、 Lo G5 、 Canny6 等 。 Prewitt 算子 方 法 简 单 ,处 理 速 度 快 ,但 是 用 Prewitt 算 子 直接 检 测 边 缘 得 到 的 边 缘 比 较 粗 。 Canny 边 缘 检 测算 子 是 目 前 在 理 论 上 相 对 最 完 善 的 一 种 边 缘 检 测方 法 。 Canny 算 子 具 有 较 好 的 抗 噪 性 能 ,而 且 它 能产 生 边 缘 的 梯 度 方 向 和 强 度 两 个 信 息 ,为 后 续 处 理提 供 了 方 便 。 但 是 Canny 算 子 也 存 在 不 足 之 处
9、 ,为 了 得 到 较 好 的 边 缘 检 测 结 果 ,它 通 常 需 要 使 用 较大 的 滤 波 尺 度 ,这 样 容 易 丢 失 一 些 细 节 。单 一 尺 度 上 的 边 缘 检 测 往 往 影 响 到 边 缘 的 正确 检 测 和 定 位 。 Rosenfeld 等 7 首 先 提 出 要 把 多 个尺 度 的 算 子 检 测 到 的 边 缘 加 以 组 合 。 所 谓 多 尺 度边 缘 检 测 ,就 是 有 效 地 组 合 利 用 多 个 不 同 尺 度 的 边缘 检 测 算 子 正 确 地 检 测 出 产 生 于 一 幅 图 像 内 的 边 1994-2010 China A
10、cademic Journal Electronic Publishing House. All rights reserved. http:/计 算 技 术 与 自 动 化 2009 年 12 月缘 。 尹 平 8 、 王 润 生 等 提 出 了 自 适 应 多 尺 度 边 缘 检测 算 法 及 其 快 速 实 现 办 法 。 1992 年 Mallat 9 用 多尺 分 辨 率 思 想 将 Marr 算 子 和 Canny 算 子 统 一 到一 起 ,提 出 基 于 小 波 变 换 的 多 尺 度 图 像 边 缘 检 测 。多 尺 度 信 号 处 理 不 仅 可 以 辨 识 出 信 号 中
11、 的 重 要 特征 ,而 且 能 以 不 同 的 细 节 程 度 来 构 造 信 号 的 描 述 ,这 在 高 层 视 觉 处 理 中 有 重 要 的 作 用 。2 二 维 图 像 边 缘 检 测 原 理定 义 ( x , y) 是 二 维 平 滑 函 数 ,可 以 把 它 沿 x和 y 两 个 方 向 的 一 阶 导 数 作 为 小 波 函 数 : 1 ( x , y) = 9 ( x , y)9x , 2 ( x , y) = 9 ( x , y)9y (1)二 维 函 数 f ( x , y) 表 示 图 像 数 据 ,它 在 x 和 y两 个 方 向 上 的 尺 度 为 s 的 小 波
12、 变 换 为 :W T1 f ( x , y) = f ( x , y) 3 1 s( x , y) =s 99x ( f ( x , y) 3 s ( x , y) )W T2 f ( x , y) = f ( x , y) 3 2 s( x , y) =s 99y ( f ( x , y) 3 s ( x , y) ) (2)以 二 进 制 小 波 来 表 示 ,上 式 中 的 尺 度 s 通 常 取2 j ,上 式 表 示 为 向 量 形 式W T1 f ( x , y)W T2 f ( x , y) = 2j99x ( f ( x , y) 3 2j ( x , y) )99y ( f
13、 ( x , y) 3 2j ( x , y) )=2j currency1( f ( x , y) 3 2 j ( x , y) ) (3)求 出 (3) 式 梯 度 矢 量 的 模 及 幅 角 :M2 j f ( x , y) = | W T1 f ( x , y) | 2 +| W T2 f ( x , y) | 2 1/ 2 (4)A2 j f ( x , y) = rct n W T2 f ( x , y) / W T1 f ( x , y) , W T1 f ( x , y) 0 - rct n W T2 f ( x , y) / W T1 f ( x , y) , W T1 f
14、( x , y) 0(5)从 以 上 讨 论 可 知 ,f ( x ,y) 关 于 1 ( x) 和 2 ( x)的 小 波 变 换 具 有 明 显 的 理 论 意 义 ,将 图 像 进 行 小 波分 解 后 ,小 波 矢 量 的 模 的 局 部 极 大 值 就 对 应 着 图 像在 分 辨 率 为 2j 时 的 奇 异 点 ,即 边 缘 。 小 波 矢 量 的方 向 近 似 垂 直 于 边 缘 的 切 线 方 向 。3 多 尺 度 边 缘 检 测 方 法本 文 提 出 的 基 于 小 波 变 换 的 边 缘 检 测 方 法 主要 步 骤 为 : 对 待 检 图 像 进 行 平 滑 降 噪 处
15、 理 ,得 到G ; 对 降 噪 后 的 图 像 G进 行 多 级 小 波 变 换 ,得 到多 级 小 波 变 换 系 数 ; 求 得 各 级 小 波 变 换 系 数 的 局部 模 极 大 值 ,得 到 不 同 分 辨 率 下 的 边 缘 ; 融 合 各级 边 缘 ,最 后 细 化 边 缘 。311 多 尺 度 边 缘 检 测噪 声 对 图 像 边 缘 的 检 测 影 响 很 大 ,所 以 在 对 图像 进 行 边 缘 检 测 之 前 要 对 含 噪 图 像 进 行 降 噪 处 理 。小 波 去 噪 技 术 充 分 地 利 用 了 小 波 变 换 的 多 分 辨 率分 析 的 特 性 对 图
16、像 进 行 去 噪 ,在 改 善 信 噪 比 的 同时 ,还 可 以 保 留 信 号 突 变 部 分 的 信 息 ,且 该 方 法 计算 简 单 ,是 一 种 比 较 理 想 的 去 噪 方 法 。对 降 噪 图 像 进 行 多 级 小 波 分 解 ,从 而 得 到 不 同分 辩 率 下 的 近 似 图 像 、 水 平 高 频 图 像 、 垂 直 高 频 图像 及 对 角 高 频 图 像 ,也 能 得 到 各 级 小 波 系 数 。 如 图1 所 示 。 图 2 是 小 波 分 解 后 的 低 频 图 像 LL1、 LL2、LL3 的 边 缘 。 LL1 中 包 含 的 图 像 边 缘 信 息
17、 最 丰富 ,同 时 ,也 包 含 由 噪 声 产 生 的 边 缘 ;LL2 由 于 噪声 急 剧 减 少 ,所 以 ,LL2 的 边 缘 信 息 受 噪 声 的 影 响较 小 ;而 LL3 已 经 相 当 平 滑 ,基 本 不 含 有 噪 声 ,但是 丢 失 了 一 些 边 缘 信 息 。 第 三 层 的 水 平 、 垂 直 、 对角 高 频 图 像 (即 HL3、 VL3、 DL3) 包 含 大 量 的 高 频信 息 ,是 图 像 的 强 边 缘 。 如 图 3 所 示 。从 图 2 和 图 3 中 可 以 看 出 :LL2 边 缘 信 息 比 较丰 富 ,而 且 受 噪 声 影 响 最
18、小 ; HL3、 VL3 及 DL3 包含 有 强 边 缘 信 息 。 本 文 从 第 二 层 的 低 频 图 像 及 第三 层 的 高 频 图 像 中 获 得 图 像 的 边 缘 ,作 为 最 终 图 像边 缘 的 备 选 边 缘 。 图 4 为 上 述 不 同 分 辨 率 下 的 边缘 融 合 示 意 图 。312 细 化 边 缘从 图 4 中 看 出 ,加 噪 图 像 中 大 部 分 的 噪 声 已 得到 有 效 抑 制 ,所 得 到 的 边 缘 却 比 较 粗 ,所 以 下 一 步工 作 应 该 去 除 伪 边 缘 ,及 孤 立 边 缘 点 ,从 而 得 到 单一 像 素 的 边 缘
19、。文 献 10 提 出 了 一 种 细 化 边 缘 的 方 法 ,该 方 法401 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http:/第 28 卷 第 4 期 马 春 梅 等 :一 种 新 的 基 于 小 波 变 换 的 边 缘 检 测 算 法计 算 简 单 且 边 缘 提 取 效 果 理 想 。 其 主 要 步 骤 是 : :对 边 缘 图 E1 ( x , y) 进 行 带 衰 减 因 子 的 Prewitt 算子 处 理 ,得 到 边 缘 图 的 边 缘 图 E
20、2 ( x , y) ,然 后 用 边缘 图 E1 ( x , y) 减 去 边 缘 图 E2 ( x , y) ,将 负 值 部 分对 应 的 边 缘 点 的 值 改 为 零 ,就 得 到 了 细 化 了 的 边 缘图 E3 ( x , y) 。图 1 三 级 小 波 分 解 结 果图 2 低 频 图 像 的 边 缘501 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http:/计 算 技 术 与 自 动 化 2009 年 12 月图 3 第 三 级 高 频 信 息 的
21、边 缘图 4 边 缘 合 并 结 果4 实 验 结 果 与 分 析用 本 文 提 出 的 算 法 来 检 测 加 椒 盐 噪 声 的 she2taijun. bmp 的 边 缘 ,与 经 典 边 缘 检 测 算 子 检 测 的 边缘 进 行 对 比 ,如 图 5 是 检 测 结 果 。从 结 果 可 以 看 出 ,经 典 的 Lo G 算 子 、 Sobel 算子 、 Canny 算 子 对 噪 声 抑 制 效 果 较 差 ,最 优 算 子Canny 检 测 结 果 边 缘 比 较 连 续 ,但 受 噪 声 影 响 严重 。 本 文 提 出 的 算 法 在 噪 声 抑 制 方 面 做 的 很
22、好 ,边缘 点 的 检 测 结 果 优 于 Canny 等 检 测 算 子 。图 5 边 缘 检 测 结 果 比 较参 考 文 献1 ROBERTS L G. Machine perception of three - dimensional solids A. In J . T. Tippett , editor , Optical and Electro - Optical Infor2mation Processing M. New York : MIT Press , 1982 , 159 - 197.2 DAVIS L S. A survey of edge detection te
23、chniques J . CGIP ,1979 , 4 : 248 - 270.3 PREWITT J M S. Object enhancement and extraction A . In :Picture Processing and Psychopictoris M. Lipkin B S. RosenfeldA Ed , New York : Academic Press ,1970 : 75 - 149.4 KIRSCH R A. Computer determination of the constituent structureof biological imagesJ .
24、Computers in Biomedical Research ,1971. 4 :315 - 328.5 MARR D ,HILDRETH E. Theory of edge detectionA. Proceed2ings of the Royal society of London , England , 1980 , B207 : 187 -217.6 CANNYJ. A Computational Approach to edge detection J . IEEETrans . Patter Analysis and Machine Intelligence ,1986 ,8(
25、6) :679 -698.7 ROSENFELD A. Computer vision : a source of models for biologicalvisual process J . IEEE Trans . Biomedical Engineering , 1989 , 36(1) :83 - 94.8 尹 平 ,王 润 生 . 自 适 应 多 尺 度 边 缘 检 测 J . 软 件 学 报 ,2000 ,11(8) :990 - 994.9 MALLAT S , HWANG W L. Singularity detection and processingwith wavelets J . IEEE Transactions on Information Theory ,1992 ,38(2) :617 - 689.10 刘 明 艳 ,赵 景 秀 ,孙 宁 . 用 Prewitt 算 子 细 化 边 缘 J . 光 电 子 技术 ,2006 ,26(4) :259 - 263.601