收藏 分享(赏)

《三角形内角和》教学设计和反思.doc

上传人:精品资料 文档编号:10160199 上传时间:2019-10-15 格式:DOC 页数:3 大小:26KB
下载 相关 举报
《三角形内角和》教学设计和反思.doc_第1页
第1页 / 共3页
《三角形内角和》教学设计和反思.doc_第2页
第2页 / 共3页
《三角形内角和》教学设计和反思.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、三角形内角和教学设计和反思一课前系统部分(一)课标分析三角形是常见的一种图形, 在平面图形中, 三角形是最简单的多边形, 也是最基本的多边形。 学生对三角形已经有了直观的认识, 能够从平面图形中分辨出三角形。 图形认识的要求主要包括 两个方面:一是对图形自身特征的认识;二是对图形各元素之间、图形与图形之间关系的认识。(2 ) 教材分析本单元中三角形内角和是 180 是对图形自身特征的认识。对图形自身的认识,是进一步研究图形的基础。 (3 ) 学生分析学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,因为学生有以前认识角、用量角器量三

2、角板三个角的度数以及三角形的分类的基础,很多孩子都能回答出三角形的内角和是 180 度,但是他们却不知道怎样才能得出三角形的内角和是 180 度。另外,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。(四)教学目标1.通过动手操作,使学生理解并掌握三角形的内角和是 180的结论。2.能运用三角形的内角和是 180这一结论,求三角形中未知角的度数。3.培养学生动手动脑及分析推理能力。重点难点:掌握三角形的内角和是 180。(五)教学策略本节课力求通过教师的引导,为学生展现出活生生的思维活动过程,让学生在自己的“观察猜测验证概括应用”的学习过程中掌握知识。(六)教学用具三角形卡片

3、、量角器、直尺、PPT 课件。二课堂系统部分教学过程(一)、课前复习1、什么是平角?平角是多少度?2、计算角的度数。3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)二、新知(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)1、读学卡的学习目标、任务目标,做到心里有数。2、揭题:课件演示什么是三角形的内角和。3、猜想:三角形的内角和是多少度

4、。4、验证:(1 )初证:用一副三角板说明直角三角形的内角和是 180。(2 )质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。(3 )再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和 是180(师巡视)(4 )汇报结论5、结论:修改板书,把“? ”去掉,写“是”。6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是 180(课件演示)三、知识运用(课件出示练习题,生解答)1、填空(1 )一个三角形,它的两个内角度数之和是 110 ,第三个内角是( ).(2 )一个直角三角形的一个锐角是 50,则另一个锐角是( )。

5、(3 )等边三角形的 3 个内角都是( )。(4 )一个等腰三角形,它的一个底角是 50,那么它的顶角是( )。(5 )一个等腰三角形的顶角是 60,这个三角形也是( )三角形。2、判断(1 )一个三角形中最多有两个直角。 ( )(2 )锐角三角形任意两个内角的和大于 90。 ( )(3 )有一个角是 60 的等腰三角形不一定是等边三角形。 ( )(4 )三角形任意两个内角的和都大于第三个内角。 ( )( 5)直角三角形中的两个锐角的和等于 90。 ( ) 四、拓展探究根据所学的知识,你能想办法求出四边形、五边形的内角和吗?1、小组讨论。2、汇报结果。3、课件提示帮助理解。五、课后作业 回去做

6、任意一个三角形,通过撕和拼验证三角形的内角和是 180 度。三课后系统部分教学反思三角形内角和这部分内容,学生其实通过不同途径已经知道三角形内角和是180,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是 180吗?。因此这个结论必须由实践操作得出结论。如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只

7、设计了三个简单的问题然学生快速进入主题。如何验证内角和是 180,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是 180值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是 180。本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内

8、角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是 180,学生最容易出现的就是把 3 个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就 180。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报