收藏 分享(赏)

BJT MODEL 参数解释.pdf

上传人:精品资料 文档编号:10157633 上传时间:2019-10-15 格式:PDF 页数:8 大小:732.34KB
下载 相关 举报
BJT MODEL 参数解释.pdf_第1页
第1页 / 共8页
BJT MODEL 参数解释.pdf_第2页
第2页 / 共8页
BJT MODEL 参数解释.pdf_第3页
第3页 / 共8页
BJT MODEL 参数解释.pdf_第4页
第4页 / 共8页
BJT MODEL 参数解释.pdf_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、 1 : 8: q Aa 5 Pspice .Model NPN(PNPaLPNP) model parameters c l ! AF flicker noise exponent 1.0 . 2 BF ideal maximum forward beta 100.0 Kv_bv BR ideal maximum reverse beta 1.0 KvQ_bv CJC base-collector zero-bias p-n capacitance farad 0.0 “ CJE base-emitter zero-bias p-n capacitance farad 0.0 ? CJS (

2、CCS) Substrate zero-bias p-n capacitance farad 0.0 EG bandgap voltage (barrier height) eV 1.11 FC forward-bias depletion capacitor coefficient 0.5 GAMMA epitaxial region doping factor 1E-11 IKF (IK) corner for forward-beta high-current roll-off amp infinite IKR corner for reverse-beta high-current r

3、oll-off amp infinite IRB current at which Rb falls halfway to amp infinite IS transport saturation current amp 1E-16 ISC (C4) base-collector leakage saturation current amp 0.0 “ P ISE (C2) base-emitter leakage saturation current amp 0.0 ? 00000000000. 0111111111111111111111111111111111147 P ISS subs

4、trate p-n saturation current amp 0.0 ITF transit time dependency on Ic amp 0.0 KF flicker noise coefficient 0.0 . 2“ MJC (MC) base-collector p-n grading factor 0.33 MJE (ME) base-emitter p-n grading factor 0.33 MJS (MS) substrate p-n grading factor 0.0 NC base-collector leakage emission coefficient

5、2.0 “ P“ NE base-emitter leakage emission coefficient 1.5 ? P“ 2 : 8: NF forward current emission coefficient 1.0 _ “ NK high-current roll-off coefficient 0.5 NR reverse current emission coefficient 1.0 NS substrate p-n emission coefficient 1.0 PTF excess phase 1/(2 TF)Hz degree 0.0 QCO epitaxial re

6、gion charge factor coulomb 0.0 RB zero-bias (maximum) base resistance ohm 0.0 KvE RBM minimum base resistance ohm RB KlE RC collector ohmic resistance ohm 0.0 RCO epitaxial region resistance ohm 0.0 RE emitter ohmic resistance ohm 0.0 TF ideal forward transit time sec 0.0 _. HW TR ideal reverse tran

7、sit time sec 0.0 Q_. HW TRB1 RB temperature coefficient (linear) 0C -10.0 RB“ TRB2 RB temperature coefficient (quadratic) 0C -20.0 TRC1 RC temperature coefficient (linear) 0C -10.0 TRC2 RC temperature coefficient (quadratic) 0C -20.0 TRE1 RE temperature coefficient (linear) 0C -10.0 TRE2 RE temperat

8、ure coefficient (quadratic) 0C -20.0 TRM1 RBM temperature coefficient (linear) 0C -10.0 TRM2 RBM temperature coefficient (quadratic) 0C -20.0 T_ABS absolute temperature 0C T_MEASURED measured temperature 0C T_REL_GLOBAL relative to current temperature 0C T_REL_LOCAL relative to AKO model temperature

9、 0C VAF (VA) forward Early voltage volt infinite VAR (VB) reverse Early voltage volt infinite VJC (PC) base-collector built-in potential volt 0.75 VJE (PE) base-emitter built-in potential volt 0.75 VJS (PS) substrate p-n built-in potential volt 0.75 VO carrier mobility knee voltage volt 10.0 VTF tra

10、nsit time dependency on Vbc volt infinite XCJC fraction of CJC connected internally to Rb 1.0 XCJC2 fraction of CJC connected internally to Rb 1.0 XTB forward and reverse beta temperature coefficient 0.0 _Q_bv Y“ 3 : 8: XTF transit time bias dependence coefficient 0.0 . HW“ XTI (PT) IS temperature e

11、ffect exponent 3.0 ISY“ q Ba PSpice Goal Function +f ? Bandwidth (1, db_level) 9 o 1VKv/ db_level dbo zb BPBW (1, db_level) Same as Bandwidth (1, db_level) CenterFreq (1, db_level) 9 o 1VKv/ db_level db qb Falltime (1) 9 o 1/ HWb Gain Margin (1,2) 9 o 1M -180bHo 2sb GenFall (1) Falltime (1) / HWM y

12、7 KvKlb GenRise (1) GenFall (1) 6 HWb HPBW (1, db_level) sBQ1Kv db_level db xUSb 6 LPBW (1, db_level) HPBW /b Maxr (1, begin-x, end-x) s uWKvb Overshoot (1) 9 KvW yUSs1b Peak (1, n_occur) s n-occur Y Period (1) 9 o 1 b Phase Margin (1,2) so 1 0s Ho 2Mb Pulsewidth (1) 9 o 1 zb Risetime (1) 9 o 1 6 HW

13、b Swingr (1, begin-x, end-x) 9 S =o 1KvKlb TPmW2 (1, Period) XatNthy (1, Y-value, n-occur) so 1 n-occur Y-value H XUSb XatNthYn(1,Y_value,n_occur) XatNthy s YA/ b 4 : 8: XatNthYp(1,Y_value,n_occur) XatNthy s YA 6 b XatNthYpct(1,Y_PCT,n_occur) s n-occur Y YS Y_pct% H Xb YatX(1,X_value) s X-value) Yb

14、YatXpct(1,X_pct) s X XS X_pct% H Yb q$.PEFMJOHWPMUBHFDPOUSPMMFEBOEUFNQFSBUVSFEFQFOEFOUSFTJTUPST“OBMPH#FIBWJPSBM.PEFMJOH “#. DBOCFVTFEUPNPEFMBOPOMJOFBSSFTJTUPSUISPVHIVTFPG0IN2MBXBOEUBCMFTBOEFYQSFTTJPOTXIJDIEFTDSJCFSFTJTUBODF)FSFBSFTPNFFYBNQMFT7PMUBHFDPOUSPMMFESFTJTUPS*GB3FTJTUBODFWT7PMUBHFDVSWFJTBWBJ

15、MBCMF BMPPLVQUBCMFDBOCFVTFEJOUIF“#.FYQSFTTJPO5IJTUBCMFDPOUBJOT 7PMUBHF 3FTJTUBODF QBJSTQJDLFEGSPNQPJOUTPOUIFDVSWF5IFWPMUBHFJOQVUJTOPOMJOFBSMZNBQQFEGSPNUIFWPMUBHFWBMVFTJOUIFUBCMFUPUIFSFTJTUBODFWBMVFT-JOFBSJOUFSQPMBUJPOJTVTFECFUXFFOUBCMFWBMVFT-FU2TBZUIBUQPJOUTQJDLFEGSPNB3FTJTUBODFWT7PMUBHFDVSWF BSFVol

16、tage Resistance 0.5 25 1.0 50 2.0 100 5IF“#.FYQSFTTJPOGPSUIJTJTTIPXOJOJHVSF 5 : 8: Figure 1 - Voltage controlled resistor using look-up table 5FNQFSBUVSFEFQFOEFOUSFTJTUPS“UFNQFSBUVSFEFQFOEFOUSFTJTUPS PSUIFSNJTUPS DBOCFNPEFMFEXJUIBMPPLVQUBCMF PSBOFYQSFTTJPODBOCFVTFEUPEFTDSJCFIPXUIFSFTJTUBODFWBSJFTXJU

17、IUFNQFSBUVSF5IFEFOPNJOBUPSJOUIFFYQSFTTJPOJOJHVSFJTVTFEUPEFTDSJCFDPNNPOUIFSNJTUPST5IF5&.1WBSJBCMFJOUIFFYQSFTTJPOJTUIFTJNVMBUJPOUFNQFSBUVSF JO$FMTJVT5IJTJTUIFODPOWFSUFEUP,FMWJOCZBEEJOH5IJTTUFQJTOFDFTTBSZUPBWPJEBEJWJEFCZFSPQSPCMFNJOUIFEFOPNJOBUPS XIFO5$/05&5&.1DBOPOMZCFVTFEJO“#.FYQSFTTJPOT & (EFWJDFT J

18、HVSFTIPXTUIFSFTVMUTPGB%$TXFFQPGUFNQFSBUVSFGSPNUP$5IFZBYJTTIPXTUIFSFTJTUBODFPS7 * “ 6 : 8: Figure 2 - Temperature controlled resistor Figure 3 - PSpice plot of Resistance vs. Temperature (current=1A) 7BSJBCMF23-$OFUXPSL*ONPTUDJSDVJUTUIFWBMVFPGBSFTJTUPSJTGJYFEEVSJOHBTJNVMBUJPO8IJMFUIFWBMVFDBOCFNBEFUPD

19、IBOHFGPSBTFUPGTJNVMBUJPOTCZVTJOHB1BSBNFUSJD4XFFQUPNPWFUISPVHIBGJYFETFRVFODFPGWBMVFT BWPMUBHFDPOUSPMMFESFTJTUPSDBOCFNBEFUPDIBOHFEZOBNJDBMMZEVSJOHBTJNVMBUJPO5IJTJTJMMVTUSBUFECZUIFDJSDVJUTIPXOJOJHVSF XIJDIFNQMPZTBWPMUBHFDPOUSPMMFESFTJTUPS 7 : 8: Figure 4 - Parameter sweep of control voltage 5IJTDJSDVJU

20、FNQMPZTBOFYUFSOBMSFGFSFODFDPNQPOFOUUIBUJTTFOTFE5IFPVUQVUJNQFEBODFFRVBMTUIFWBMVFPGUIFDPOUSPMWPMUBHFUJNFTUIFSFGFSFODF)FSF XFXJMMVTF3SFG BPINSFTJTUPSBTPVSSFGFSFODF“TBSFTVMU UIFPVUQVUJNQFEBODFJTTFFOCZUIFDJSDVJUBTBGMPBUJOHSFTJTUPSFRVBMUPUIFWBMVFPG7 $POUSPM UJNFTUIFSFTJTUBODFWBMVFPG3SFG*OPVSDJSDVJU UIFDPO

21、USPMWPMUBHFWBMVFJTTUFQQFEGSPNWPMUUPWPMUTJOWPMUTUFQT UIFSFGPSF UIFSFTJTUBODFCFUXFFOOPEFTBOEWBSJFTGSPNPINTUPPINTJOPINTUFQTJ Figure 5 - Variable Q RLC circuit “USBOTJFOUBOBMZTJTPGUIJTDJSDVJUVTJOHBNTXJEFQVMTFXJMMTIPXIPXUIFSJOHJOHEJGGFSTBTUIF2JTWBSJFE 8 : 8: 6TJOH1SPCF XFDBOPCTFSWFIPXUIFSJOHJOHWBSJFTBTUI

22、FSFTJTUBODFDIBOHFTJHVSFTIPXTUIFJOQVUQVMTFBOEUIFWPMUBHFBDSPTTUIFDBQBDJUPS$PNQBSJOHUIFGPVSPVUQVUXBWFGPSNT XFDBOTFFUIFNPTUQSPOPVODFESJOHJOHPDDVSTXIFOUIFSFTJTUPSIBTUIFMPXFTUWBMVFBOEUIF2JTHSFBUFTU“OZTJHOBMTPVSDFDBOCFVTFEUPESJWFUIFWPMUBHFDPOUSPMMFESFTJTUBODF*GXFIBEVTFEBTJOVTPJEBMDPOUSPMTPVSDFJOTUFBEPGBTUBJSDBTF UIFSFTJTUBODFXPVMEIBWFWBSJFEEZOBNJDBMMZEVSJOHUIFTJNVMBUJPOFigure 6 - Output waveforms of variable Q RLC circuit

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报