1、 1 : 8: q Aa 5 Pspice .Model NPN(PNPaLPNP) model parameters c l ! AF flicker noise exponent 1.0 . 2 BF ideal maximum forward beta 100.0 Kv_bv BR ideal maximum reverse beta 1.0 KvQ_bv CJC base-collector zero-bias p-n capacitance farad 0.0 “ CJE base-emitter zero-bias p-n capacitance farad 0.0 ? CJS (
2、CCS) Substrate zero-bias p-n capacitance farad 0.0 EG bandgap voltage (barrier height) eV 1.11 FC forward-bias depletion capacitor coefficient 0.5 GAMMA epitaxial region doping factor 1E-11 IKF (IK) corner for forward-beta high-current roll-off amp infinite IKR corner for reverse-beta high-current r
3、oll-off amp infinite IRB current at which Rb falls halfway to amp infinite IS transport saturation current amp 1E-16 ISC (C4) base-collector leakage saturation current amp 0.0 “ P ISE (C2) base-emitter leakage saturation current amp 0.0 ? 00000000000. 0111111111111111111111111111111111147 P ISS subs
4、trate p-n saturation current amp 0.0 ITF transit time dependency on Ic amp 0.0 KF flicker noise coefficient 0.0 . 2“ MJC (MC) base-collector p-n grading factor 0.33 MJE (ME) base-emitter p-n grading factor 0.33 MJS (MS) substrate p-n grading factor 0.0 NC base-collector leakage emission coefficient
5、2.0 “ P“ NE base-emitter leakage emission coefficient 1.5 ? P“ 2 : 8: NF forward current emission coefficient 1.0 _ “ NK high-current roll-off coefficient 0.5 NR reverse current emission coefficient 1.0 NS substrate p-n emission coefficient 1.0 PTF excess phase 1/(2 TF)Hz degree 0.0 QCO epitaxial re
6、gion charge factor coulomb 0.0 RB zero-bias (maximum) base resistance ohm 0.0 KvE RBM minimum base resistance ohm RB KlE RC collector ohmic resistance ohm 0.0 RCO epitaxial region resistance ohm 0.0 RE emitter ohmic resistance ohm 0.0 TF ideal forward transit time sec 0.0 _. HW TR ideal reverse tran
7、sit time sec 0.0 Q_. HW TRB1 RB temperature coefficient (linear) 0C -10.0 RB“ TRB2 RB temperature coefficient (quadratic) 0C -20.0 TRC1 RC temperature coefficient (linear) 0C -10.0 TRC2 RC temperature coefficient (quadratic) 0C -20.0 TRE1 RE temperature coefficient (linear) 0C -10.0 TRE2 RE temperat
8、ure coefficient (quadratic) 0C -20.0 TRM1 RBM temperature coefficient (linear) 0C -10.0 TRM2 RBM temperature coefficient (quadratic) 0C -20.0 T_ABS absolute temperature 0C T_MEASURED measured temperature 0C T_REL_GLOBAL relative to current temperature 0C T_REL_LOCAL relative to AKO model temperature
9、 0C VAF (VA) forward Early voltage volt infinite VAR (VB) reverse Early voltage volt infinite VJC (PC) base-collector built-in potential volt 0.75 VJE (PE) base-emitter built-in potential volt 0.75 VJS (PS) substrate p-n built-in potential volt 0.75 VO carrier mobility knee voltage volt 10.0 VTF tra
10、nsit time dependency on Vbc volt infinite XCJC fraction of CJC connected internally to Rb 1.0 XCJC2 fraction of CJC connected internally to Rb 1.0 XTB forward and reverse beta temperature coefficient 0.0 _Q_bv Y“ 3 : 8: XTF transit time bias dependence coefficient 0.0 . HW“ XTI (PT) IS temperature e
11、ffect exponent 3.0 ISY“ q Ba PSpice Goal Function +f ? Bandwidth (1, db_level) 9 o 1VKv/ db_level dbo zb BPBW (1, db_level) Same as Bandwidth (1, db_level) CenterFreq (1, db_level) 9 o 1VKv/ db_level db qb Falltime (1) 9 o 1/ HWb Gain Margin (1,2) 9 o 1M -180bHo 2sb GenFall (1) Falltime (1) / HWM y
12、7 KvKlb GenRise (1) GenFall (1) 6 HWb HPBW (1, db_level) sBQ1Kv db_level db xUSb 6 LPBW (1, db_level) HPBW /b Maxr (1, begin-x, end-x) s uWKvb Overshoot (1) 9 KvW yUSs1b Peak (1, n_occur) s n-occur Y Period (1) 9 o 1 b Phase Margin (1,2) so 1 0s Ho 2Mb Pulsewidth (1) 9 o 1 zb Risetime (1) 9 o 1 6 HW
13、b Swingr (1, begin-x, end-x) 9 S =o 1KvKlb TPmW2 (1, Period) XatNthy (1, Y-value, n-occur) so 1 n-occur Y-value H XUSb XatNthYn(1,Y_value,n_occur) XatNthy s YA/ b 4 : 8: XatNthYp(1,Y_value,n_occur) XatNthy s YA 6 b XatNthYpct(1,Y_PCT,n_occur) s n-occur Y YS Y_pct% H Xb YatX(1,X_value) s X-value) Yb
14、YatXpct(1,X_pct) s X XS X_pct% H Yb q$.PEFMJOHWPMUBHFDPOUSPMMFEBOEUFNQFSBUVSFEFQFOEFOUSFTJTUPST“OBMPH#FIBWJPSBM.PEFMJOH “#. DBOCFVTFEUPNPEFMBOPOMJOFBSSFTJTUPSUISPVHIVTFPG0IN2MBXBOEUBCMFTBOEFYQSFTTJPOTXIJDIEFTDSJCFSFTJTUBODF)FSFBSFTPNFFYBNQMFT7PMUBHFDPOUSPMMFESFTJTUPS*GB3FTJTUBODFWT7PMUBHFDVSWFJTBWBJ
15、MBCMF BMPPLVQUBCMFDBOCFVTFEJOUIF“#.FYQSFTTJPO5IJTUBCMFDPOUBJOT 7PMUBHF 3FTJTUBODF QBJSTQJDLFEGSPNQPJOUTPOUIFDVSWF5IFWPMUBHFJOQVUJTOPOMJOFBSMZNBQQFEGSPNUIFWPMUBHFWBMVFTJOUIFUBCMFUPUIFSFTJTUBODFWBMVFT-JOFBSJOUFSQPMBUJPOJTVTFECFUXFFOUBCMFWBMVFT-FU2TBZUIBUQPJOUTQJDLFEGSPNB3FTJTUBODFWT7PMUBHFDVSWF BSFVol
16、tage Resistance 0.5 25 1.0 50 2.0 100 5IF“#.FYQSFTTJPOGPSUIJTJTTIPXOJOJHVSF 5 : 8: Figure 1 - Voltage controlled resistor using look-up table 5FNQFSBUVSFEFQFOEFOUSFTJTUPS“UFNQFSBUVSFEFQFOEFOUSFTJTUPS PSUIFSNJTUPS DBOCFNPEFMFEXJUIBMPPLVQUBCMF PSBOFYQSFTTJPODBOCFVTFEUPEFTDSJCFIPXUIFSFTJTUBODFWBSJFTXJU
17、IUFNQFSBUVSF5IFEFOPNJOBUPSJOUIFFYQSFTTJPOJOJHVSFJTVTFEUPEFTDSJCFDPNNPOUIFSNJTUPST5IF5&.1WBSJBCMFJOUIFFYQSFTTJPOJTUIFTJNVMBUJPOUFNQFSBUVSF JO$FMTJVT5IJTJTUIFODPOWFSUFEUP,FMWJOCZBEEJOH5IJTTUFQJTOFDFTTBSZUPBWPJEBEJWJEFCZFSPQSPCMFNJOUIFEFOPNJOBUPS XIFO5$/05&5&.1DBOPOMZCFVTFEJO“#.FYQSFTTJPOT & (EFWJDFT J
18、HVSFTIPXTUIFSFTVMUTPGB%$TXFFQPGUFNQFSBUVSFGSPNUP$5IFZBYJTTIPXTUIFSFTJTUBODFPS7 * “ 6 : 8: Figure 2 - Temperature controlled resistor Figure 3 - PSpice plot of Resistance vs. Temperature (current=1A) 7BSJBCMF23-$OFUXPSL*ONPTUDJSDVJUTUIFWBMVFPGBSFTJTUPSJTGJYFEEVSJOHBTJNVMBUJPO8IJMFUIFWBMVFDBOCFNBEFUPD
19、IBOHFGPSBTFUPGTJNVMBUJPOTCZVTJOHB1BSBNFUSJD4XFFQUPNPWFUISPVHIBGJYFETFRVFODFPGWBMVFT BWPMUBHFDPOUSPMMFESFTJTUPSDBOCFNBEFUPDIBOHFEZOBNJDBMMZEVSJOHBTJNVMBUJPO5IJTJTJMMVTUSBUFECZUIFDJSDVJUTIPXOJOJHVSF XIJDIFNQMPZTBWPMUBHFDPOUSPMMFESFTJTUPS 7 : 8: Figure 4 - Parameter sweep of control voltage 5IJTDJSDVJU
20、FNQMPZTBOFYUFSOBMSFGFSFODFDPNQPOFOUUIBUJTTFOTFE5IFPVUQVUJNQFEBODFFRVBMTUIFWBMVFPGUIFDPOUSPMWPMUBHFUJNFTUIFSFGFSFODF)FSF XFXJMMVTF3SFG BPINSFTJTUPSBTPVSSFGFSFODF“TBSFTVMU UIFPVUQVUJNQFEBODFJTTFFOCZUIFDJSDVJUBTBGMPBUJOHSFTJTUPSFRVBMUPUIFWBMVFPG7 $POUSPM UJNFTUIFSFTJTUBODFWBMVFPG3SFG*OPVSDJSDVJU UIFDPO
21、USPMWPMUBHFWBMVFJTTUFQQFEGSPNWPMUUPWPMUTJOWPMUTUFQT UIFSFGPSF UIFSFTJTUBODFCFUXFFOOPEFTBOEWBSJFTGSPNPINTUPPINTJOPINTUFQTJ Figure 5 - Variable Q RLC circuit “USBOTJFOUBOBMZTJTPGUIJTDJSDVJUVTJOHBNTXJEFQVMTFXJMMTIPXIPXUIFSJOHJOHEJGGFSTBTUIF2JTWBSJFE 8 : 8: 6TJOH1SPCF XFDBOPCTFSWFIPXUIFSJOHJOHWBSJFTBTUI
22、FSFTJTUBODFDIBOHFTJHVSFTIPXTUIFJOQVUQVMTFBOEUIFWPMUBHFBDSPTTUIFDBQBDJUPS$PNQBSJOHUIFGPVSPVUQVUXBWFGPSNT XFDBOTFFUIFNPTUQSPOPVODFESJOHJOHPDDVSTXIFOUIFSFTJTUPSIBTUIFMPXFTUWBMVFBOEUIF2JTHSFBUFTU“OZTJHOBMTPVSDFDBOCFVTFEUPESJWFUIFWPMUBHFDPOUSPMMFESFTJTUBODF*GXFIBEVTFEBTJOVTPJEBMDPOUSPMTPVSDFJOTUFBEPGBTUBJSDBTF UIFSFTJTUBODFXPVMEIBWFWBSJFEEZOBNJDBMMZEVSJOHUIFTJNVMBUJPOFigure 6 - Output waveforms of variable Q RLC circuit