高一数学一元二次不等式的解法二

一元二次不等式及其解法(二),一元二次函数、一元二次方程、一元二次不等式的相互关系及其解法:,二次函数,一元二次方程,=,有两个相等实根,无实根,复习,解一元二次不等式的一般步骤,1:确定二次项系数符号(一般将二次系数化为正)2:判别(能十字相乘法的不需判别)3:用求根公式得出一元二次方程的两根(能

高一数学一元二次不等式的解法二Tag内容描述:

1、一元二次不等式及其解法(二),一元二次函数、一元二次方程、一元二次不等式的相互关系及其解法:,二次函数,一元二次方程,=,有两个相等实根,无实根,复习,解一元二次不等式的一般步骤,1:确定二次项系数符号(一般将二次系数化为正)2:判别(能十字相乘法的不需判别)3:用求根公式得出一元二次方程的两根(能用十字相乘法的不需用公式)4:由1、2、3三个步骤画出不等式所对应函数的大致图像5:根据所画图像得出不等式的解集,复习,例1. 求不等式的解集.,例题讲解,例1. 求不等式的解集.,例题讲解,注意:不是一元二次不等式,但可以通过换元、。

2、一元二次不等式及其解法(一),x25x0,某同学要把自己的计算机接入因特网.现有两家ISP公司可供选择.公司A每小时收费1.5元(不足1小时按1小时计算);公司B的收费原则:在用户上网的第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元,以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算). 一般来说,一次上网时间不会超过17个小时,所以,不妨假设一次上网时间总小于17小时.那么,一次上网在多长时间以内能够保证选择公司A的上网费用小于或等于选择公司B所需费用?,情景引入,我们把只含有一个未知数,并且未知数的最高。

3、一元二次不等式及其解法(一),x25x0,某同学要把自己的计算机接入因特网.现有两家ISP公司可供选择.公司A每小时收费1.5元(不足1小时按1小时计算);公司B的收费原则:在用户上网的第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元,以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算). 一般来说,一次上网时间不会超过17个小时,所以,不妨假设一次上网时间总小于17小时.那么,一次上网在多长时间以内能够保证选择公司A的上网费用小于或等于选择公司B所需费用?,情景引入,我们把只含有一个未知数,并且未知数的最高。

4、一元二次不等式及其解法(二),一元二次函数、一元二次方程、一元二次不等式的相互关系及其解法:,二次函数,一元二次方程,=,有两个相等实根,无实根,复习,解一元二次不等式的一般步骤,1:确定二次项系数符号(一般将二次系数化为正)2:判别(能十字相乘法的不需判别)3:用求根公式得出一元二次方程的两根(能用十字相乘法的不需用公式)4:由1、2、3三个步骤画出不等式所对应函数的大致图像5:根据所画图像得出不等式的解集,复习,例1. 求不等式的解集.,例题讲解,例1. 求不等式的解集.,例题讲解,注意:不是一元二次不等式,但可以通过换元、。

5、一元二次不等式及分式不等式的解法典题探究例 若 , 则 不 等 式 的 解 是1 0a(xa)01( )axA.B1. xaC或. axD或1.例 2 有意义,则 的取值范围是 6x例 3 若 ax2 bx10 的解集为x| 1x2,则 a_,b_例 4 解关于 x 的不等式 (k0,k1).02)(xk演练方阵A 档(巩固专练)1关于 的不等式 的解集为 R 的充要条件是 ( )x|2|m(A) (B ) (C) (D)00m2m2不等式 的解集为 ( )2)1(x(A) (B) (C) (D),2),)1,2),23不等式 的解集为非空集合,则实数 的取值范围是( )axx|3|4| a(A) (B) (C) (D)1a1143a4 .不等式 的解集为 ( )13log()x。

6、,2.2-1 一元二次不等式,复习一元二次方程,(1)公式法 X=,求根的方法:,(2)配方法,化为顶点式,(3)十字相乘法,复习一元二次方程:ax2+bx+c=0(a0),方法一:,方法二:,方法三:,复习一元二次函数,复习一元二次函数:y=ax2+bx+c(a0),当a0时图像,复习一元二次函数,复习一元二次函数:y=ax2+bx+c(a0),当a0时图像,是二次的不等式叫做一元二次不等式.,问题:如何解一元二次不等式呢?,定义:含有一个未知数,,并且未知数的最高次数,一元二次不等式定义:,形如: ax2+bx+c0 或 ax2+bx+c0(a0),所以二次函数y=x2-2x-3的图象如图:,y,例:解一元二次不。

7、一元二次不等式及其解法(4),江苏省常熟中学高一数学备课组,2009-3-10,复习:,1. 解不等式,2. 关于x的不等式a x2 +4x a 2 0的解集为A , 2A , 则a的取值范围是_.,考点3 不等式中的恒成立问题,例1 已知f (x)=x2-2ax+2,当x-1,+), f (x) a恒成立. 求a的取值范围.,例2,例3 在R上定义运算:xy=x(1-y),若不等式(x-a) (x+a)1对任意x R恒成立,求a的取值范围.,不等式恒成立问题的处理策略,1.若f(x)a(xD) 恒成立 f(x)min(xD)a;,2.若f(x)a(xD) 恒成立 f(x)max(xD)a;,常用方法之一是:,分离变量a和x.,最常用方法之二:,不等式的一边化为零,另一边化成。

8、最新 料推荐 第 5 讲 一元二次不等式与分式不等式的解法 【知识要点】 1、一元二次不等式的概念 :我们把只含有一个未知数, 并且未知数最高次数是 2 的不等式, 称为一元二次不式 . 2、一元二次不等式的解法步骤 : 一元二次不等式 ax2 bx c 0或 ax2 bx c 0 a 0 的解集: 设 。

9、3.3 一元二次不等式的解法 课件,问题:,(1)如何解一元二次方程(2)二次函数 的图象是 什么曲线?(3)一元二次方程 的 解与二次函数 的图象 有什么联系?,一元二次方程 的解实际上就是二次函数与x轴交点的横坐标。,下面我们来研究如何应用二次函数的图象来解一元二次不等式。,首先,我们可以把任何一个一元二次不等式转化为下列四种形式中的一种:,以上四个不等式中我们规定了如果题目中给出的不等式中二次项系数小于0,哪怎么办呢?,我们只要在不等式两边同乘-1,然后把不等式的方向改变一下,就可化为以上四种形式中的一种。,下面我。

10、- 1 -一元二次不等式解法典型例题能力素质例 若 , 则 不 等 式 的 解 是1 0a(xa)01 AxBa 1CxDa 或 或 1分 析 比 较 与 的 大 小 后 写 出 答 案 解 , , 解 应 当 在 “两 根 之 间 ”, 得 选 0a1 axA 1a例 有 意 义 , 则 的 取 值 范 围 是 2 xx6分析 求算术根,被开方数必须是非负数解 据题意有,x 2x60,即(x3)(x2)0 ,解在“两根之外” ,所以x3 或 x2例 3 若 ax2bx1 0 的解集为x| 1x2,则a _, b_分析 根据一元二次不等式的解公式可知, 1 和 2 是方程 ax2bx10 的两个根,考虑韦达定理解 根据题意,1,2 应为方程 ax2bx10 的两根。

11、最新 料推荐 知识点一:一元二次不等式的定义 注意: 只含有一个未知数,并且未知数的最高次数是 2 的不等式,称为一元二次不等 ( 1)一元二次方程 的两根 是相应的不等式的解 式。比如: . 集的端点的取值,是抛物线 与 轴的交点的横坐标; 任 意 的 一 元 二 次 不 等。

12、1高一数学一元二次不等式解法练习题及答案 例 若 , 则 不 等 式 的 解 是1 0a(xa)01 AaxB 1CxaD 或 或 1分 析 比 较 与 的 大 小 后 写 出 答 案 a解 , , 解 应 当 在 “两 根 之 间 ”, 得 选 01 axA 1a例 有 意 义 , 则 的 取 值 范 围 是 2 xx6分析 求算术根,被开方数必须是非负数解 据题意有,x 2x6 0,即(x 3)(x 2)0,解在“两根之外”,所以x3 或 x2例 3 若 ax2bx 1 0 的解集为x|1x2,则a_,b _ 分析 根据一元二次不等式的解公式可知,1 和 2 是方程 ax2bx10 的两个根,考虑韦达定理解 根据题意,1,2 应为方程 ax2bx10 的两。

13、一元二次不等式解法(1),主讲人:贾国富,问题 1.一次函数y= axb (a0)的图象是什么? 2.二次函数 y= ax2bxc (a0)的图象是什么?,答案 1.一次函数y= axb (a0)的图象是一条直线;; 2.二次函数 y= ax2bxc (a0)的图象是一条抛物线。,一元二次不等式的解法,=,=,一元一次不等式可用图象法求解,方程的解即函数图象与x轴交点的横标,不等式的解集即函数图象在x轴下方或上方图象所对应x的范围。,一元一次方程、一元一次不等式与一次函数的关系:,=,=,X=-2或x=3,x|x3,x| -2x3,问: 方程ax2bxc=0、不等式ax2bxc 0 与函数y= ax2bxc的图象有什么。

14、1教 案课题 1.5.2 一元二次不等式解法(二)教学目标 (一)教学知识点1、会把部分一元二次不等式转化成一次不等式组来求解.2、简单分式不等式求解.(二)能力训练要求1、通过问题求解渗透等价转化的思想,提高运算能力.2、通过问题求解渗透分类讨论思想,提高逻辑思维能力.(三)德育渗透目标通过问题求解过程,渗透教学重点 一元二次不等式求解.教学难点 将已知不等式等价转化成合理变形式子.教学方法 创造教学法为使问题得到解决,关键在于合理地将已知不等式变形,变形的过程也是一个创造的过程,只有这一过程完成好,本节课的难点也就。

15、第二课时,3.2 一元二次不等式及其解法,高一数学必修5第三章不等式,例1、某同学要把自己的计算机接入因特网,现有甲、乙两家公司可供选择.甲公司每小时收费1.5元(不足1小时按1小时计算);乙公司的收费原则为:上网的第一小时内(含1小时,下同)收费1.7元,第二小时内收费1.6元,以后每小时减少0.1元(若用户一次上网超过17小时,按17小时计算).,新知探究,1.假设一次上网时间为x小时(不足17小时),则在甲、乙两家公司上网所收取的费用分别为:,甲:1.5x元;,元.,新知探究,乙:,2.如何根据上网时间选择到甲、乙两家公司上网?,答:一次上网时间在。

16、高一数学一元二次不等式解法练习题及答案例 若 , 则 不 等 式 的 解 是1 0a(xa)01 AaxB 1CxaD 或 或 1分 析 比 较 与 的 大 小 后 写 出 答 案 a解 , , 解 应 当 在 “两 根 之 间 ”, 得 选 01 axA 1a例 有 意 义 , 则 的 取 值 范 围 是 2 xx6分析 求算术根,被开方数必须是非负数解 据题意有, x2 x60,即(x3)(x2)0,解在“两根之外” ,所以 x3 或 x2例 3 若 ax2bx10 的解集为x|1x2,则a_ ,b_ 分析 根据一元二次不等式的解公式可知,1 和 2 是方程 ax2bx 10 的两个根,考虑韦达定理解 根据题意, 1, 2 应为方程 ax2bx10 的两根。

17、一元二次不等式解法(1),主讲人:贾国富,问题 1.一次函数y= axb (a0)的图象是什么? 2.二次函数 y= ax2bxc (a0)的图象是什么?,答案 1.一次函数y= axb (a0)的图象是一条直线;; 2.二次函数 y= ax2bxc (a0)的图象是一条抛物线。,一元二次不等式的解法,更多资源xiti123.taobao.com,=,=,一元一次不等式可用图象法求解,方程的解即函数图象与x轴交点的横标,不等式的解集即函数图象在x轴下方或上方图象所对应x的范围。,一元一次方程、一元一次不等式与一次函数的关系:,=,=,X=-2或x=3,x|x3,x| -2x3,问: 方程ax2bxc=0、不等式ax2bxc 0 。

18、浙师大附中同步作业! 1.5.2 一元二次不等式的解法(二) */,、, 口口 班级 学号 姓名 数学第一册上编写:蒋淑飞 j 含后要狂:一季后母素数而不茱式笈恒成立问题的解法。 一、基础练习 1、不等式 ax2 +bx +2 0 的解集为x | - <x <-,则 a+b=() 23 A 、-14 B 、14 C 、-10 D 、10 2、已知不等式ax2 -2ax+。

19、高一数学【一元二次不等式的解法】班级 学号 姓名 目标要点:掌握含字母系数的不等式及恒成立问题的解法。一、基础练习1、不等式 的解集为x ,则 a+b=-( 022bxa 312x).A、-14 B、14 C、-10 D、102、已知不等式 的解集为 ,则 a 的取值范围是-( )0322axaA、 B、 C、 D、303a3、若 ab 时,不等式 x2-(a+b)x+ab0 的解集为-( )Ax|xa 或 xb Bx|xa 或 xbCx|axb Dx|bxa4、若方程 x2+(m+2)x+m+5=0 的两根均为正数,则 m 的取值范围是_5、设不等式 对于一切实数 都成立,则 的范围是13642kxk_.二、能力培养6、已知集合 A=x|x2-5x+40,B=x|x 2。

20、高一数学一元二次不等式的解法(二)班级 学号 姓名 目标要点:掌握含字母系数的不等式及恒成立问题的解法。一、基础练习1、不等式 的解集为x ,则 a+b=-( 022bxa 312x).A、-14 B、14 C、-10 D、102、已知不等式 的解集为 ,则 a 的取值范围是-( )0322axaA、 B、 C、 D、303a3、若 ab 时,不等式 x2-(a+b)x+ab0 的解集为-( )Ax|xa 或 xb Bx|xa 或 xbCx|axb Dx|bxa4、若方程 x2+(m+2)x+m+5=0 的两根均为正数,则 m 的取值范围是_5、设不等式 对于一切实数 都成立,则 的范围是13642kxk_.二、能力培养6、已知集合 A=x|x2-5x+40,B=x|x。

【高一数学一元二次不等式的】相关PPT文档
【高一数学一元二次不等式的】相关DOC文档
标签 > 高一数学一元二次不等式的解法二[编号:141095]

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报