几何概型,(1)试验中所有可能出现的基本事件只有有限个(有限性);,2.在现实生活中,常常会遇到试验的所有可能结果是无穷多的情况,这时就不能用古典概型来计算事件发生的概率.对此,我们必须学习新的方法来解决这类问题.,(2)每个基本事件出现的可能性相等(等可能性).,1.古典概型有哪两个基本特点?,知
3.3.1 几何概型Tag内容描述:
1、几何概型,(1)试验中所有可能出现的基本事件只有有限个(有限性);,2.在现实生活中,常常会遇到试验的所有可能结果是无穷多的情况,这时就不能用古典概型来计算事件发生的概率.对此,我们必须学习新的方法来解决这类问题.,(2)每个基本事件出现的可能性相等(等可能性).,1.古典概型有哪两个基本特点?,知识探究(一):几何概型的概念,思考1:某班公交车到终点站的时间可能是11:3012:00之间的任何一个时刻; 往一个方格中投一粒芝麻,芝麻可能落在方格中的任何一点上.这两个试验可能出现的结果是有限个,还是无限个?若没有人为因素。
2、3.3 几何概型3.3.13.3.2 几何概型及均匀随机数的产生一、教学目标:1、 知识与技能:(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P(A)= ;积 )的 区 域 长 度 ( 面 积 或 体试 验 的 全 部 结 果 所 构 成 积 )的 区 域 长 度 ( 面 积 或 体构 成 事 件 A(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;(4)了解均匀随机数的概念;(5)掌握利用计算器(计算机)产生均匀随机数的方法;(6)会利用均匀随机数解决具体的有关概率的问题2、 过程与方法:(1)发现法教学,通过师。
3、3.31 几何概型一、教材分析本节内容是新教材必修 3 中第三章第二节的第一课时,是新增加的知识模块,对于概率部分来说,这是一个教学难点,如何循序渐进地引入新课,由易到难地提出问题,进而顺利地解决问题,是本节课的关键。二、学生分析高二的学生已经具备了初步的数学建模的意识,而前一节的学习使学生能够把一些实际问题转化为古典概型,并对概率的意义有了较深刻的理解,在此基础上,通过类比,观察,推断,归纳等合情推理过渡到几何概型应该是水到渠成,顺理成章的,能够有效地提高学生的直觉思维能力,分析问题,解决问题的能力。。
4、3.3.1 几何概型 (第一课时) (人教 A 版必修 3)傅小云 2009-3-30 第 8 周 星期一 第六节 K-12教学目标1、 知识与技能:(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P(A)= ;积 )的 区 域 长 度 ( 面 积 或 体试 验 的 全 部 结 果 所 构 成 积 )的 区 域 长 度 ( 面 积 或 体构 成 事 件 A(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;2、 过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系。
5、3.3.1 几何概型 (第一课时) (人教 A 版必修 3)傅小云 2009-3-30 第 8 周 星期一 第六节 K-12教学目标1、 知识与技能:(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P(A)= ;积 )的 区 域 长 度 ( 面 积 或 体试 验 的 全 部 结 果 所 构 成 积 )的 区 域 长 度 ( 面 积 或 体构 成 事 件 A(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;2、 过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系。
6、,高一数学备课组,几何概型,数学是好“玩”的,长度,面积,情景2: 一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,遇到红灯和绿灯的概率那个大?为什么?,提出问题,古典概型的两个基本特点: (1)所有的基本事件只有有限个; (2)每个基本事件发生都是等可能的。,思考:上述问题的概率是古典概型问题吗? 为什么?,那么对于有无限多个试验结果(不可数)的情况相应的概率应如何求呢?,几何概型,自学后提问,1、几何概型是怎样定义的?,事件A理解为区域的某一子区域A,A的概率只与子区域A的几。
7、3.3 几何概型3.3.13.3.2 几何概型及均匀随机数的产生一、教学目标:1、 知识与技能:(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P(A)= ;积 )的 区 域 长 度 ( 面 积 或 体试 验 的 全 部 结 果 所 构 成 积 )的 区 域 长 度 ( 面 积 或 体构 成 事 件 A(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;(4)了解均匀随机数的概念;(5)掌握利用计算器(计算机)产生均匀随机数的方法;(6)会利用均匀随机数解决具体的有关概率的问题2、 过程与方法:(1)发现法教学,通过师。
8、几何概型(1),问题情境:,问题1:射箭比赛的箭靶涂有五个彩色得分环,从外向内为白色、黑色、蓝色、红色,靶心为金色金色靶心叫“黄心”奥运会的比赛靶面直径为 122cm,靶心直径为12.2cm, 运动员在70m外射假设射箭 都能中靶,且射中靶面内任意 一点都是等可能的,那么射中 黄心的概率有多大?,(1)试验中的基本事件是什么?,能用古典概型描述该事件的概率吗?为什么?,(2)每个基本事件的发生是等可能的吗?,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122cm的大圆内的任意一点.,(3)符合古典概型的特点吗?,问题2:取。
9、3.3.1几何概型,假设你家订了一份报纸,送报人可能在早上6:307:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:008:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?能否用古典概型的公式来求解?事件A包含的基本事件有多少?,为什么要学习几何概型?,引例,早在概率论发展初期,人们就认识到, 只考虑有限个等可能样本点的古典方法是不够的.,借助于古典概率的定义,设想仍用“事件的概率”等于“部分”比“全体”的方法,来规定事件的概率. 不过现在的“部分”和“全体”所包含的样本点是无限的. 用什么数学方法才能构造。
10、3.31 几何概型一、教材分析本节内容是新教材必修 3 中第三章第二节的第一课时,是新增加的知识模块,对于概率部分来说,这是一个教学难点,如何循序渐进地引入新课,由易到难地提出问题,进而顺利地解决问题,是本节课的关键。二、学生分析高二的学生已经具备了初步的数学建模的意识,而前一节的学习使学生能够把一些实际问题转化为古典概型,并对概率的意义有了较深刻的理解,在此基础上,通过类比,观察,推断,归纳等合情推理过渡到几何概型应该是水到渠成,顺理成章的,能够有效地提高学生的直觉思维能力,分析问题,解决问题的能力。。
11、3.3.1几何概型教材分析:和古典概型一样,在特定情形下,我们可以用几何概型来计算事件发生的概率它也是一种等可能概型教材首先通过实例对比概念给予描述,然后通过均匀随机数随机模拟的方法的介绍,给出了几何概型的一种常用计算方法与本课开始介绍的 P(A)的公式计算方法前后对应,使几何概型这一知识板块更加系统和完整这节内容中的例题既通俗易懂,又具有代表性,有利于我们的教与学生的学教学重点是几何概型的计算方法,尤其是设计模型运用随机模拟方法估计未知量;教学难点是突出用样本估计总体的统计思想,把求未知量的问题转化为。
12、人教 B 版必修三“3.3.1 几何概型 ”教案1几何概型教案一课题:几何概型二课型:新授课三课时:一课时四教学内容分析:几何概型是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸。几何概型的基本特点是:在每次随机试验中,不同的试验结果有无限多个,即基本事件有无限个;在这个随机试验中,每个试验结果出现的可能性相等,即基本事件是等可能的。几何概型与古典概型的区别在于,几何概型是无限个等可能事件的情况,而古典概型中的等可能事件只有有限个。课本从两者的比较入手,通过分析两个简单的几何概型的例子。
13、13.3.1 几何概型教材分析本节内容是数学必修 4 第三章 第三节的第一课,本小节是继古典概型之后学习的另一类等可能概型,是教材新增加的内容,对它的要求仅限于初步体会几何概型的意义几何概型的研究,是古典概型的拓广,将古典概型试验结果有限个拓广到无限个;它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关本节的教学需要一些实物模型为教具,如教科书中的转盘模型,教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性本节课的教学重点是理解几何概型。
14、3.3.1几何概型教材分析:和古典概型一样,在特定情形下,我们可以用几何概型来计算事件发生的概率它也是一种等可能概型教材首先通过实例对比概念给予描述,然后通过均匀随机数随机模拟的方法的介绍,给出了几何概型的一种常用计算方法与本课开始介绍的 P(A)的公式计算方法前后对应,使几何概型这一知识板块更加系统和完整这节内容中的例题既通俗易懂,又具有代表性,有利于我们的教与学生的学教学重点是几何概型的计算方法,尤其是设计模型运用随机模拟方法估计未知量;教学难点是突出用样本估计总体的统计思想,把求未知量的问题转化为。
15、几何概型,引例,假设你家订了一份报纸,送报人可能在早上6:307:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:008:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少? 能否用古典概型的公式来求解? 事件A包含的基本事件有多少?,为什么要学习几何概型?,问题:图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?,事实上,甲获胜的概率与字母B所在扇形区域的圆弧的长度有关,而与字母B所在区域的位置无关.因为转转盘时,指针指向圆弧上哪一点都是等可能的.不。
16、几何概型(1),复习,古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.,那么对于有无限多个试验结果的情况相应的概率应如果求呢?,1.取一根长度为30cm的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于10cm的概率有多大?,从30cm的绳子上的任意一点剪断.,基本事件:,问题情境,射中靶面直径为122cm的大圆内的任意一点.,这两个问题能否用古典概型的方法来求解呢? 怎么办呢?,基本事件:,问题情境,下图是卧室和书房地板的示意图,图中每一块方砖除颜色外完全相同,小猫分别在卧室和书房中自由。