收藏 分享(赏)

甘肃省民乐一中2015年高三第一次诊断考试文科数学试卷(解析版).doc

上传人:cjc2202537 文档编号:995816 上传时间:2018-05-14 格式:DOC 页数:12 大小:1.12MB
下载 相关 举报
甘肃省民乐一中2015年高三第一次诊断考试文科数学试卷(解析版).doc_第1页
第1页 / 共12页
甘肃省民乐一中2015年高三第一次诊断考试文科数学试卷(解析版).doc_第2页
第2页 / 共12页
甘肃省民乐一中2015年高三第一次诊断考试文科数学试卷(解析版).doc_第3页
第3页 / 共12页
甘肃省民乐一中2015年高三第一次诊断考试文科数学试卷(解析版).doc_第4页
第4页 / 共12页
甘肃省民乐一中2015年高三第一次诊断考试文科数学试卷(解析版).doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、甘肃省民乐一中 2015 届高三第一次诊断考试文科数学试卷(解析版)一、选择题1已知集合 , -1,0,1 ,2,3 ,则 =( ,4)1(|2NxxMPPM)A 0 ,1 ,2 B -1,0,1,2 C-1, 0,2,3 D0,1,2 ,3【答案】A【解析】试题分析:由 ,解得:-1x3,即 M=x|-1x3,N=-1,0,1,2 ,3,4)(2xM N=0,1,2故选 A考点:集合间交、并、补的运算 2函数 的定义域是( ))13lg()(2xxfA B C D,31, )31,()31,(【答案】B【解析】试题分析:由题意 1-x0 且 3x+10,解得 x ,故选 B)1,3(考点:函

2、数的定义域3 “ 或 是假命题”是“非 为真命题”的( )pqpA充分而不必要条件 B必要而不充分条件C充要条件 D既不充分也不必要条件【答案】A【解析】试题分析:p 或 q 是假命题,意味着 p,q 均为假命题,所以,非 p 为真命题;反之,非 p为真命题,意味着 p 为假命题,而 q 的真假不确定,所以,无法确定 p 或 q 是真假命题,即“p 或 q 是假命题” 是 “非 p 为真命题”的充分而不必要条件,故选 A考点:充分条件与必要条件4下列函数中,既是偶函数又在区间(0,+ )上单调递减的是( )A B1yxxyeC D2lg|【答案】C【解析】试题分析: 在(0,+ )上是减函数,

3、但在定义域内是奇函数,故排除 A;1yx在(0,+ )上是减函数,但不具备奇偶性,故排除 B; 是偶函数,且xye 21yx在(0,+)上为减函数,故选 C; 在定义域(-,0 )(0,+)上是偶函lg|yx数,但在(0,+ )上为增函数,故排除 D考点:奇偶性与单调性的综合5函数 xxf1log)(2的一个零点落在下列哪个区间( )A (0 ,1 ) B (1,2) C (2 ,3) D (3,4)【答案】B【解析】试题分析: ,f (1 )f(2)0根据函数的实根存在0ff(, 定理得到函数 xx1log)(2的一个零点落在(1,2 )上故选 B考点:函数零点的判定定理6设函数 f(x)

4、若 f(a)f(1)2,则 a( ),0A3 B3 C1 D 1【答案】D【解析】试题分析:f(a)f(1 )2,f(a)1,a=1,选 D考点:分段函数值7若 f(x)是 R 上周期为 5 的奇函数,且满足 f(1)1 ,f (2 )2,则 f(3)f(4)( )A1 B1 C2 D2【答案】B【解析】试题分析:若 f(x)是 R 上周期为 5 的奇函数f (-x)=-f(x) ,f (x+5)=f (x ) ,f(3 )=f(-2)=-f (2 )=-2 ,f (4 )=f(-1)=-f (1 )=-1,f(3)-f(4)=-2-(-1)=-1故答案为:B考点:1奇偶性与单调性的综合; 2

5、函数奇偶性的性质; 3函数的周期性8已知 则 的大小关系为( ),log,)1(, 52.02.1cbacba,A B C Dcaaacb【答案】C【解析】试题分析: ,ab1c=2log 52=log541,a bc 故选:C 0.2.1.21b( )考点:对数的运算性质,(1)()42,()xaf x【答案】D【解析】试题分析:当 x1 时, 为增函数 ,又当 x142afxx( 40时, 为增函数a1 同时,当 x=1 时,函数对应于一次函数的取值要小于指数xf( )函数的取值 ,综上所述,4a8 ,故选 B142a(考点:函数单调性的判断与证明10函数 2xy的图象大致是( )【答案】

6、A【解析】试题分析:因为当 x=2 或 4 时, ,所以排除 B、C;当 x=-2 时,20x,故排除 D,所以选 A2104x考点:函数的图象与图象变化11已知 是定义在 上的函数,且 则 的解集是( )(xfyR,1)(,)1(ff xf)()A B C D)1,0(),0(,),(),【答案】C【解析】试题分析:设 g(x)=f (x)-x,因为 f(1 )=1 ,f (x) 1,所以 g(1 )=f(1)-1=0,所以 g(x)在 R 上是增函数,且 g(1)=0 所以 f(x)x 的解集即10f(是 g(x )0 的解集(1 ,+)故选 C考点:1函数的单调性与导数的关系; 2其他不

7、等式的解法12函数 的图像与函数 的图像所有交点的横坐标之和1xyxysin2)4(等于( )A2 B4 C6 D8【答案】D【解析】试题分析:函数 , 的图象有公共的对称中心(1,0 ) ,作出两个函1xy2sinyx数的图象如图当 1x4 时, 而函数 在(1,4)上出现 15 个周期的图象,在 和10y2y 3(1)2(上是减函数;在 和 上是增函数函数 在(1,4 )上函数值为负数,57()2(35()(7((y且与 的图象有四个交点 E、F、G、H 相应地, 在(-2,1)上函数值为正数,且与y的图象有四个交点 A、B 、 C、D 且: ,故所求2 2AHBGCFDExxx=的横坐标

8、之和为 8 故选 D考点:1奇偶函数图象的对称性; 2三角函数的周期性及其求法; 3正弦函数的图象二、填空题13命题“ ”的否定是 012,0xRx。【答案】 ,2【解析】试题分析:命题“ ”是特称命题,命题的否定为:012,0xRx12,xR考点:命题的否定 yk3ab(,)【答案】3【解析】试题分析:把(1,3)代入直线 中,得到 k=2,求导得: ,所以1ykx23yxa,解得 a=-1,把(1,3 )及 a=-1 代入曲线方程得:1-1+b=3,则 b 的值为|2xya3考点:利用导数研究曲线上某点切线方程 )1(,)(3xefx2(fx【答案】 8,【解析】试题分析:x 1 时, ,

9、 ,x1;x1 时,12xeln,x8,1x8,132综上,使得 f( x)2 成立的 x 的取值范围是 x8故答案为: 8,(考点:1其他不等式的解法; 2分段函数的解析式求法及其图象的作法16已知 , 若同时满足条件:)3)()(mf 2(xg ;0,xgRx或 ,)()4(f则 的取值范围是 。m【答案】 2【解析】试题分析:对于 ,当 x1 时,g(x)0 ,又xg( )或 在 x1 时恒成立,则0xRf, ( ) ( ) 230fm( ) ()()由二次函数的性质可知开口只能向下,且二次函数与 x 轴交点都在(1,0)的左面,则312m -4m0 即成立的范围为-4m0 又x (-,

10、-4) ,f (x)g (x)0此时恒成立 在 x(-,-4)有成立的2xg( ) 23fm( ) ()()可能,则只要-4 比 中的较小的根大即可( i)当-1m0 时,-m-3-4 不成立,12x,(ii)当 m=-1 时,有 2 等根,不成立, (iii)当 时,2m -4 即 m-2 成立综上41 可得成立时-4m-2 ,故答案为:( -4,-2) 考点:1全称命题;2二次函数的性质;3指数函数综合题三、解答题17已知关于 x的不等式 052ax的解集为 M(1 )当 a时,求集合 ;(2 )当 M3且 时,求实数 的范围【答案】 (1) (- ,1)( 1,5) ;(2) 25931

11、a或【解析】试题分析:(1)把 a=1 代入不等式中,求出解集即可得到集合 M;(2)因为 3M 且5M,先把 x=5 代入不等式求出 a 的范围,然后取范围的补集,又因为 3 属于集合 M,所以把 x=3 代入不等式中,求出关于 a 的不等式的解集即可得到 a 的取值范围;与求出 a 的范围联立求出公共解集即可试题解析:(1)当 1时, )5,1(,(0)1(5052 xx(2 ) 939393aaM或505a不成立又 251212或或不成立 a综上可得, 935a或考点:一元二次不等式的解法18已知 ,设命题 :函数 为减函数命题 :当 时,函数0cpxcyq2,1x恒成立如果“p 或 q

12、”为真命题, “p 且 q”为假命题,求 c 的取值范围xf1)(【答案】 | 20cc 或【解析】试题分析:利用复合指数函数的单调性求命题 P 为真的 c 的范围;先求 f(x)的最小值,分析函数 恒成立的条件,然后解出命题 q 为真命题的 c 的范围;根据 p1xcf( )或 q 为真命题,p 且 q 为假命题,则 P、q 命题一真一假,求解试题解析:解:由命题 p 为真知,0c1 ,由命题 q 为真知,2x ,x52要使此式恒成立,需 2,即 c ,若“p 或 q”为真命题, “p 且 q”为假命题,则 p、q 中必有一真一假,当 p 真 q 假时,c 的取值范围是 0c ;12当 p

13、假 q 真时,c 的取值范围是 c1综上可知,c 的取值范围是 | cc 或考点:1复合命题的真假; 2交、并、补集的混合运算; 3指数函数单调性的应用19已知函数 在区间 上的最大值是 2,求实数 的值14)(axxf ,0a【答案】 3106a或【解析】试题分析:先求对称轴,比较对称轴和区间的关系,利用开口向下的二次函数离对称轴越近函数值越大解题试题解析: 3106a或,对称轴24)2()xf 2ax(1 ) 即 时, 在 上单调递减,0a)(xf1,0 214)0()(maxaff此时可得 6(2 ) 即 时,12a 214)2()(maxff此时可得 或 ,与 矛盾,舍去。30(3 )

14、 即 时, 在 上单调递增,12a)(xf1,0 214)1()(max aff此时可得 30综上所述: 6a或考点:二次函数在闭区间上的最值20已知定义域为 的函数 是奇函数R2)(1xbf(1 )求 的值;b(2 )用定义法证明函数 在 上是减函数;)(f(3 )若对任意的 ,不等式 恒成立,求 的取值范围Rt0)2()2ktftf k【答案】 (1) ;(2)详见解析;(3) b31【解析】试题分析:(1)利用 f(0) =0 即可解出;(2 )利用减函数的定义即可证明;(3)利用函数的奇偶性、单调性即可解出试题解析:(1)由 可得)(f1b(2 )由(1 )可得: ,则 ,122xxf

15、( ) 12x 210x ,2 211 112()xxxxfxf( ) ( ) 12ff( ) ( )函数 f(x)在 R 上是减函数(3 )可得 ,)2()()(22 tkftft 函数 为 上的减函数f所以有 ,Rt023kt所以 解得1431考点:1函数奇偶性的性质; 2函数单调性的判断与证明21已知函数 xaxfln)((1 )若函数 在 处取得极值,求实数 的值;a(2 )若函数 在定义域内单调递增,求实数 的取值范围;)(xf a(3 )当 时,关于 的方程 在 上有两个不相等的实数根,求21abxf21)(4,实数 的取值范围b【答案】 (1) ;(2) ;(3) 43a5ln【

16、解析】试题分析:(1)求出函数的导数 ,根据题意解关于 a 的等式 ,即可得到fx( ) 20f( )实数 a 的值;(2 )由题意,不等式 在(0 ,+)内恒成立,等价转化为 在f( ) 21x(0 , +)内恒成立,求出右边的最小值为-1 ,即可得到实数 a 的取值范围;(3)原方程化简为 ,设 ,利用导数研究2134xlnb21,04gxxlnbx( ) ( )g( x)的单调性得到原方程在1 ,4上恰有两个不相等的实数根的等价命题,建立关于 b的不等式组并解之,即可得到实数 b 的取值范围试题解析:(1)由 可得 ;0)2(f3a(2 )函数 的定义域是)(xf),函数 在定义域内单调

17、递增在 上恒成立021)(axf ),(即 在 上恒成立2),(12x1a(3 )可得 ,xb34ln24,记 ,xg)( 1则 0231 x2x或时, ;),()(g时,40, ,45)1(g2ln)(2ln)4(g0352lnb考点:1利用导数研究函数的极值; 2利用导数研究函数的单调性22如图,A,B,C,D 四点在同一圆上, 与 的延长线交于点 ,点 在 的BCADEFBA延长线上FEDCBA(1 )若 ,求 的值;21,3ABB(2 )若 ,证明: F2 CDE/【答案】 (1) ;(2)详见解析6【解析】试题分析:(1)根据圆内接四边形的性质,可得 ECD=EAB,EDC=B,从而EDCEBA,所以有,利用比例的性质可得 ,得到 ;(2)根ABDCE 21,3EADBC6C据题意中的比例中项,可得 ,结合公共角可得FAEFEB,所以FEFEA=EBF,再由(1)的结论EDC=EBF,利用等量代换可得FEA=EDC ,内错角相等,所以 EF CD试题解析:证明:(1) 四点共圆, ,DCBA,EBFDC又 , ,ECDE,BA, 21,36AB

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 教育学

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报