收藏 分享(赏)

初中数学竞赛知识点归纳.doc

上传人:精品资料 文档编号:9945480 上传时间:2019-09-22 格式:DOC 页数:44 大小:1.06MB
下载 相关 举报
初中数学竞赛知识点归纳.doc_第1页
第1页 / 共44页
初中数学竞赛知识点归纳.doc_第2页
第2页 / 共44页
初中数学竞赛知识点归纳.doc_第3页
第3页 / 共44页
初中数学竞赛知识点归纳.doc_第4页
第4页 / 共44页
初中数学竞赛知识点归纳.doc_第5页
第5页 / 共44页
点击查看更多>>
资源描述

1、智浪教育-普惠英才文库初中数学竞赛知识点归纳一、数的整除(一)如果整数 A 除以整数 B(B0)所得的商 A/B 是整数,那么叫做 A 被 B 整除. 0 能被所有非零的整数整除.一些数的整除特征除 数 能被整除的数的特征2 或 5 末位数能被 2 或 5 整除 4 或 25 末两位数能被 4 或 25 整除8 或 125 末三位数能被 8 或 125 整除3 或 9 各位上的数字和被 3 或 9 整除(如 771,54324)11奇数位上的数字和与偶数位上的数和相减,其差能被 11 整除(如 143,1859,1287,908270 等)7,11,13 从右向左每三位为一段,奇数段的各数和与

2、偶数段的各数和相减,其差能被 7 或 11 或 13 整除.(如 1001,22743,17567,21281 等)能被 7 整除的数的特征:抹去个位数 减去原个位数的 2 倍 其差能被 7 整除。如 1001 100298(能被 7 整除)又如 7007 70014686, 681256(能被 7 整除)能被 11 整除的数的特征: 抹去个位数 减去原个位数 其差能被 11 整除如 1001 100199(能 11 整除)又如 10285 102851023 102399(能 11 整除)二、倍数.约数1 两个整数 A 和 B(B0) ,如果 B 能整除 A(记作 BA) ,那么 A 叫做

3、B 的倍数,B 叫做 A 的约数。例如 315,15 是 3 的倍数,3 是 15 的约数。2 因为 0 除以非 0 的任何数都得 0,所以 0 被非 0 整数整除。0 是任何非 0 整数的倍数,非0 整数都是 0 的约数。如 0 是 7 的倍数,7 是 0 的约数。3 整数 A(A 0)的倍数有无数多个,并且以互为相反数成对出现,0,A,2A,都是 A 的倍数,例如 5 的倍数有5,10,。4 整数 A( A0)的约数是有限个的,并且也是以互为相反数成对出现的,其中必包括1 和A。例如 6 的约数是 1,2,3,6。5 通常我们在正整数集合里研究公倍数和公约数,几正整数有最小的公倍数和最犬的

4、公约数。6 公约数只有 1 的两个正整数叫做互质数(例如 15 与 28 互质) 。7 在有余数的除法中,被除数除数商数余数 若用字母表示可记作:ABQR ,当 A,B ,Q,R 都是整数且 B0 时,AR 能被 B 整除例如 23372 则 232 能被 3 整除。三、质数.合数1 正整数的一种分类:智浪教育-普惠英才文库质数的定义:如果一个大于 1 的正整数,只能被 1 和它本身整除,那么这个正整数叫做质数(质数也称素数) 。合数的定义:一个正整数除了能被 1 和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数。2 根椐质数定义可知 质数只有 1 和本身两个正约数, 质数中只有一个

5、偶数 2如果两个质数的和或差是奇数那么其中必有一个是 2, 如果两个质数的积是偶数那么其中也必有一个是 2, 3 任何合数都可以分解为几个质数的积。能写成几个质数的积的正整数就是合数。四、零的特性一,零既不是正数也不是负数,是介于正数和负数之间的唯一中性数。 零是自然数,是整数,是偶数。1, 零是表示具有相反意义的量的基准数。例如:海拔 0 米的地方表示它与基准的海平面一样高收支衡可记作结存 0 元。2, 零是判定正、负数的界限。若 a 0 则 a 是正数,反过来也成立,若 a 是正数,则 a0记作 a0 a 是正数 读作 a0 等价于 a 是正数bb 时,a-b0 ;当 a0,b0, 那么

6、a+b0,不可逆绝对值性质 如果 a0,那么|a|=a 也不可逆(若|a|=a 则 a0)7, 有规律的计算,常可用字母表示其结果,或概括成公式。例 1:正整数中不同的五位数共有几个?不同的 n 位数呢?解:不同的五位数可从最大 五位数 99999 减去最小五位数 10000 前的所有正整数,即99999-9999=90000.推广到 n 位正整数,则要观察其规律一位正整数,从 1 到 9 共 9 个, 记作 91二位正整数从 10 到 99 共 90 个, 记作 910三位正整数从 100 到 999 共 900 个, 记作 9102四位正整数从 1000 到 9999 共 9000 个,

7、记作 9103 (指数 3=4-1) n 位正整数共 910 n-1 个例 2 _A C D E B在线段 AB 上加了 3 个点 C、 D、E 后,图中共有几条线段? 加 n 点呢?解:以 A 为一端的线段有: AC、AD、AE、AB 共 4 条以 C 为一端的线段有:(除 CA 外) CD、CE、CB 共 3 条以 D 为一端的线段有:(除 DC、DA 外) DE、DB 共 2 条以 E 为一端的线段有:(除 ED、EC 、EA 外) EB 共 1 条共有线段 1+2+3+4=10 (条) 注意:3 个点时,是从 1 加到 4, 因此如果是 n 个点,则共有线段 1+2+3+n+1= =

8、条n)(八、抽屉原则1, 4 个苹果放进 3 个抽屉,有一种必然的结果:至少有一个抽屉放进的苹果不少于 2 个(即等于或多于 2 个) ;如果 7 个苹果放进 3 个抽屉,那么至少有一个抽屉放进的苹果不少于 3 个(即的等于或多于 3 个) ,这就是抽屉原则的例子。2, 如果用 表示不小于 的最小整数,例如 3, 。那么抽屉原则nmn726可定义为:m 个元素分成 n 个集合( m、n 为正整数 mn),则至少有一个集合里元素不少于 个。 3, 根据 的定义,己知 m、n 可求 ;n己知 ,则可求 的范围,例如己知 3,那么 2 3;己知nnm 2,则 1 2,即 3x6,x 有最小整数值 4

9、3xx九、一元一次方程解的讨论智浪教育-普惠英才文库1, 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。一元方程的解也叫做根。例如:方程 2x60, x(x-1)=0, |x|=6, 0x=0, 0x=2 的解分别是: x=3, x=0 或 x=1, x=6, 所有的数,无解。2, 关于 x 的一元一次方程的解(根)的情况:化为最简方程 ax=b 后,讨论它的解:当 a0 时,有唯一的解 x= ; ab当 a=0 且 b0 时,无解;当 a=0 且 b0 时,有无数多解。 (不论 x 取什么值,0x0 都成立)3, 求方程 ax=b(a0)的整数解、正整数解、正数解当 ab

10、 时,方程有整数解;当 ab,且 a、b 同号时,方程有正整数解;当 a、b 同号时,方程的解是正数。综上所述,讨论一元一次方程的解,一般应先化为最简方程 ax=b十、二元一次方程的整数解1, 二元一次方程整数解存在的条件:在整系数方程 ax+by=c 中,若 a,b 的最大公约数能整除 c,则方程有整数解。即如果(a,b)|c 则方程 ax+by=c 有整数解显然 a,b 互质时一定有整数解。例如方程 3x+5y=1, 5x-2y=7, 9x+3y=6 都有整数解。返过来也成立,方程 9x+3y=10 和 4x-2y=1 都没有整数解,(9,3)3,而 3 不能整除 10;(4,2)2,而

11、2 不能整除 1。一般我们在正整数集合里研究公约数, (a,b)中的 a,b 实为它们的绝对值。2, 二元一次方程整数解的求法:若方程 ax+by=c 有整数解,一般都有无数多个,常引入整数 k 来表示它的通解(即所有的解) 。k 叫做参变数。方法一,整除法:求方程 5x+11y=1 的整数解解:x= = (1) , 51yyy2510设 是整数) ,则 y=1-5k (2) , k(把(2)代入(1)得 x=k-2(1-5k)=11k-2原方程所有的整数解是 (k 是整数)yx512方法二,公式法:设 ax+by=c 有整数解 则通解是 ( x0,y0 可用观察法)0yxakybx03, 求

12、二元一次方程的正整数解: 出整数解的通解,再解 x,y 的不等式组,确定 k 值 用观察法直接写出。十一、二元一次方程组解的讨论智浪教育-普惠英才文库1 二元一次方程组 的解的情况有以下三种:2211cybxa 当 时,方程组有无数多解。 (两个方程等效)2121 当 时,方程组无解。 (两个方程是矛盾的)2121cba 当 (即 a1b2a 2b10)时,方程组有唯一的解:21(这个解可用加减消元法求得) 12111bacyx2 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。求方程组中的待定系数的取值,一般是求出方程组的解(把待定系

13、数当己知数) ,再解含待定系数的不等式或加以讨论。十二、用交集解题1 某种对象的全体组成一个集合。组成集合的各个对象叫这个集合的元素。例如 6 的正约数集合记作6 的正约数1,2,3,6 ,它有 4 个元素 1,2,3,6;除以 3 余1 的正整数集合是个无限集,记作除以 3 余 1 的正整数1,4,7,10 ,它的个元素有无数多个。2 由两个集合的所有公共元素组成的一个集合,叫做这两个集合的交集例如 6 的正约数集合 A1 ,2,3,6 ,10 的正约数集合 B1,2,5,10 ,6与 10 的公约数集合 C1, 2 ,集合 C 是集合 A 和集合 B 的交集。3 几个集合的交集可用图形形象

14、地表示,右图中左边的椭圆表示正数集合,右边的椭圆表示整数集合,中间两个椭圆的公共部分,是它们的交集正整数集。不等式组的解集是不等式组中各个不等式解集的交集。例如不等式组 解的集合就是)2(16x不等式(1)的解集 x3 和不等式(2)的解集 x2 的交集,x3 . 如数轴所示: 0 2 34一类问题,它的答案要同时符合几个条件,一般可用交集来解答。把符合每个条件的所有的解(即解的集合)分别求出来,它们的公共部分(即交集)就是所求的答案。智浪教育-普惠英才文库有时可以先求出其中的一个(一般是元素最多)的解集,再按其他条件逐一筛选、剔除,得答案。十三、用枚举法解题有一类问题的解答,可依题意一一列举

15、,并从中找出规律。列举解答要注意: 按一定的顺序,有系统地进行; 分类列举时,要做到既不重复又不违漏; 遇到较大数字或抽象的字母,可从较小数字入手,由列举中找到规律。十四、经验归纳法1通常我们把“从特殊到一般”的推理方法、研究问题的方法叫做归纳法。通过有限的几个特例,观察其一般规律,得出结论,它是一种不完全的归纳法,也叫做经验归纳法。例如由 ( 1)2 1 , ( 1 ) 3 1 , ( 1 ) 4 1 ,归纳出 1 的奇次幂是 1,而 1 的偶次幂 是 1 。由两位数从 10 到 99 共 90 个( 9 10 ) ,三位数从 100 到 999 共 900 个(910 2) ,四位数有 9

16、1039000 个(910 3) ,归纳出 n 位数共有 910n-1 (个) 由 1+3=22, 1+3+5=3 2, 1+3+5+7=4 2推断出从 1 开始的 n 个連续奇数的和等于 n2 等。可以看出经验归纳法是获取新知识的重要手段,是知识攀缘前进的阶梯。2. 经验归纳法是通过少数特例的试验,发现规律,猜想结论,要使规律明朗化,必须进行足夠次数的试验。由于观察产生的片面性,所猜想的结论,有可能是错误的,所以肯定或否定猜想的结论,都必须进行严格地证明。 (到高中,大都是用数学归纳法证明)十五、乘法公式1 乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。公式中的

17、每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。公式的应用不仅可从左到右的顺用(乘法展开) ,还可以由右到左逆用(因式分解) ,还要记住一些重要的变形及其逆运算除法等。2 基本公式就是最常用、最基礎的公式,并且可以由此而推导出其他公式。完全平方公式:(ab) 2=a22ab+b2,平方差公式:(a+b)(ab)=a 2b 2立方和(差)公式:(ab)(a 2 ab+b2)=a3b33.公式的推广: 多项式平方公式:(a+b+c+d) 2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd即:多项式平方等于各项平方和加上每两项积的 2 倍。 二项式定

18、理:(ab) 3=a33a2b+3ab2b3(ab)4=a44a3b+6a2b24ab3+b4)智浪教育-普惠英才文库(ab) 5=a55a4b+10a3b2 10a2b35ab 4b5)注意观察右边展开式的项数、指数、系数、符号的规律 由平方差、立方和(差)公式引伸的公式(a+b)(a 3a 2b+ab2b 3)=a4b 4 (a+b)(a4a 3b+a2b2ab 3+b4)=a5+b5(a+b)(a5a 4b+a3b2a 2b3+ab4b 5)=a6b 6 注意观察左边第二个因式的项数、指数、系数、符号的规律在正整数指数的条件下,可归纳如下:设 n 为正整数(a+b)(a2n1 a 2n2

19、 b+a2n3 b2ab 2n2 b 2n1 )=a2nb 2n(a+b)(a2na 2n1 b+a2n2 b2ab 2n1 +b2n)=a2n+1+b2n+1类似地:(ab)(a n1 +an2 b+an3 b2+ab n2 +bn1 )=anb n 4. 公式的变形及其逆运算由(a+b) 2=a2+2ab+b2 得 a2+b2=(a+b)22ab由 (a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得 a3+b3=(a+b)33ab(a+b)由公式的推广可知:当 n 为正整数时anb n 能被 ab 整除, a2n+1+b2n+1 能被 a+b 整除,a2nb 2

20、n 能被 a+b 及 ab 整除。十六、整数的一种分类1 余数的定义:在等式 A mBr 中,如果 A、B 是整数,m 是正整数,r 为小于 m 的非负整数,那么我们称 r 是 A 除以 m 的余数。即:在整数集合中 被除数除数商余数 (0余数n),那么 m2-n2,2mn, m 2+n2 是一组勾股数。 如果 k 是大于 1 的奇数,那么 k, , 是一组勾股数。1k 如果 k 是大于 2 的偶数,那么 k, , 是一组勾股数。2K12 如果 a,b,c 是勾股数,那么 na, nb, nc (n 是正整数)也是勾股数。5. 熟悉勾股数可提高计算速度,顺利地判定直角三角形。简单的勾股数有:3

21、,4,5; 5,12,13; 7,24,25; 8,15,17; 9,40,41。三十二、中位线1. 三角形中位线平行于第三边,并且等于第三边的一半。梯形中位线平行于两底,并且等于两底和的一半。2. 中位线性质定理的结论,兼有位置和大小关系,可以用它判定平行,计算线段的长度,确定线段的和、差、倍关系。3. 运用中位线性质的关键是从出现的线段中点,找到三角形或梯形,包括作出辅助线。4. 中位线性质定理,常与它的逆定理结合起来用。它的逆定理就是平行线截比例线段定理及推论,一组平行线在一直线上截得相等线段,在其他直线上截得的线段也相等经过三角形一边中点而平行于另一边的直线,必平分第三边经过梯形一腰中

22、点而平行于两底的直线,必平分另一腰5. 有关线段中点的其他定理还有:直角三角形斜边中线等于斜边的一半等腰三角形底边中线和底上的高,顶角平分线互相重合对角线互相平分的四边形是平行四边形线段中垂线上的点到线段两端的距离相等因此如何发挥中点作用必须全面考虑。三十三、同一法1. “同一法”是一种间接的证明方法。它是根据符合“同一法则”的两个互逆命题必等效的原理,当一个命题不易证明时,釆取证明它的逆命题。智浪教育-普惠英才文库2. 同一法则的定义是:如果一个命题的题设和结论都是唯一的事项时,那么它和它的逆命题同时有效。这称为同一法则。互逆两个命题一般是不等价的。例如原命题:福建是中国的一个省 (真命题)

23、逆命题:中国的一个省是福建 (假命题)但当一命题的题设和结论都是唯一的事项时,则它们是等效的。例如原命题:中国的首都是北京 (真命题)逆命题:北京是中国的首都 (真命题)因为世界上只有一个中国,而且中国只有一个首都,所以互逆的两个命题是等效的。又如原命题:等腰三角形顶角平分线是底边上的高。 (真命题)逆命题:等腰三角形底边上的高是顶角平分线。 (真命题)因为在等腰三角形这一前提下,顶角平分线和底边上的高都是唯一的,所以互逆的两个命题是等效的。3. 釆用同一法证明的步骤:如果一个命题直接证明有困难,而它与逆命题符合同一法则,则可釆用同一法,证明它的逆命题,其步骤是: 作出符合命题结论的图形(即假

24、设命题的结论成立) 证明这一图形与命题题设相同(即证明它符合原题设)三十四、反证法1. 反证法是一种间接的证明方法。它的根据是原命题和逆否命题是等价命题,当一个命题不易直接证明时,釆取证明它的逆否命题。2. 一个命题和它的逆否命题是等价命题,可表示为:AB AB例如 原命题:对顶角相等 (真命题)逆否命题:不相等的角不可能是对顶角 (真命题)又如 原命题:同位角相等,两直线平行 (真命题)逆否命题:两直线不平行,它们的同位角必不相等 (真命题)3. 用反证法证明命题,一般有三个步骤: 反设 假设命题的结论不成立(即假设命题结论的反面成立) 归谬 推出矛盾(和已知或学过的定义、定理、公理相矛盾)

25、 结论 从而得出命题结论正确例如: 求证两直线平行。用反证法证明时 假设这两直线不平行; 从这个假设出发,经过推理论证,得出矛盾;从而肯定,非平行不可。三十五、两种对称1. 轴对称和中心对称定义 把一个图形沿着某一条直线折叠,如果它能够和另一个图形重合,那么这两个图形关于这条直线对称。这条直线叫做对称轴把一个图形绕着某一点旋转 180 ,如果它能够和另一个图形重合,那么这两个图形关于这点对称,这点叫做对称中心2. 轴对称图形和中心对称图形的定义:如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,那么这个图形中叫做轴对称图形,这条直线就是它的对称轴智浪教育-普惠英才文库一个图形绕着某一

26、点旋转 180 ,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。3. 性质:成轴对称或中心对称的两个图形是全等形 对称轴是对称点连线的中垂线;对称中心是对称点连线的中点两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上4. 常见的轴对称图形有:线段,角,等腰三角形,等腰梯形,矩形,菱形,正多边形,圆等;中心对称图形有:线段,平行四边形,边数为偶数的正多边形,圆等三十六、三点共线1. 要证明 A,B,C 三点在同一直线上, A。 B。 C 。 常用方法有:连结 AB,BC 证明ABC 是平角连结 AB,AC 证明 AB,

27、AC 重合连结 AB,BC,AC 证明 ABBCAC连结并延长 AB 证明延长线经过点 C 2. 证明三点共线常用的定理有: 过直线外一点有且只有一条直线和已知直线平行 经过一点有且只有一条直线和已知直线垂直 三角形中位线平行于第三边并且等于第三边的一半 梯形中位线平行于两底并且等于两底和的一半 两圆相切,切点在连心线上 轴对称图形中,若对应线段(或延长线)相交,则交点在对称轴上三十七、不等关系1. 不等式三个基本性质: 不等式两边都加上(或减去 )同一个数或同一个整式,不等号的方向不变。 不等式两边都乘(或除以)同一个正数,不等号的方向不变。 不等式两边都乘(或除以)同一个负数,不等号的方向

28、改变。2. 一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集。设 ab,不等式组的解集是 xa 的解集是 x0;如果 b24ac=0 且 a0;则 ax2+bx+c (a0)是完全平方式.在有理数范围内当 b24ac=0 且 a 是有理数的平方时, ax2+bx+c 是完全平方式 .四. 完全平方式和完全平方数的关系1. 完全平方式(ax+b) 2 中当 a, b 都是有理数时, x 取任何有理数,其值都是完全平方数;当 a, b 中有一个无理数时,则 x 只有一些特殊值能使其值为完全平方数.2. 某些代数式虽不是完全平方式,但当字母取特殊值

29、时,其值可能是完全平方数. 例如: n2+9, 当 n=4 时,其值是完全平方数.所以,完全平方式和完全平方数,既有联系又有区别.五. 完全平方数与一元二次方程的有理数根的关系1. 在整系数方程 ax2+bx+c=0(a0)中 若 b24ac 是完全平方数,则方程有有理数根; 若方程有有理数根,则 b24ac 是完全平方数.2. 在整系数方程 x2+px+q=0 中 若 p24q 是整数的平方,则方程有两个整数根; 若方程有两个整数根,则 p24q 是整数的平方.四十七、配方法1. 配方:这里指的是在代数式恒等变形中,把二次三项式 a22ab+b2 写成完全平方式(ab) 2. 有时需要在代数

30、式中添项、折项、分组才能写成完全平方式.常用的有以下三种:由 a2+b2 配上 2ab, 由 2 ab 配上 a2+b2, 由 a22ab 配上 b2.2. 运用配方法解题,初中阶段主要有: 用完全平方式来因式分解例如:把 x4+4 因式分解.原式x 4+44x 24x 2=(x2+2)24x 2这是由 a2+b2 配上 2ab. 二次根式化简常用公式: ,这就需要把被开方数写成完全平方式.a2例如:化简 .65我们把 52 写成 22 3 2 )(2)(( ) 2.这是由 2 ab 配上 a2+b2.智浪教育-普惠英才文库 求代数式的最大或最小值,方法之一是运用实数的平方是非负数,零就是最小

31、值.即a 20, 当 a=0 时, a 2 的值为 0 是最小值.例如:求代数式 a2+2a2 的最值.a 2+2a2= a 2+2a+13=(a+1) 23当 a=1 时, a2+2a2 有最小值3. 这是由 a22ab 配上 b2 有一类方程的解是运用几个非负数的和等于零,则每一个非负数都是零,有时就需要配方.例如::求方程 x2+y2+2x-4y+5=0 的解 x, y.解:方程 x2+y2+2x-4y+140.配方的可化为 (x+1) 2+(y2) 2=0.要使等式成立,必须且只需 .01yx解得 2此外在解二次方程中应用根的判别式,或在证明等式、不等式时,也常要有配方的知识和技巧.四

32、十八、非负数1. 非负数的意义:在实数集合里,正数和零称为非负数.a 是非负数,可记作 a0,读作 a 大于或等于零,即 a 不小于零.2. 初中学过的几种非负数:实数的绝对值是非负数. 若 a 是实数,则 0.实数的偶数次幂是非负数. 若 a 是实数,则 a2n0(n 是正整数).算术平方根是非负数,且被开方数也是非负数. 若 是二次根式,则 0, a 0.a一元二次方程有实数根时,根的判别式是非负数,反过来也成立.若二次方程 ax2+bx+c=0 (a0) 有两个实数根, 则 b24ac 0.若 b24ac0 (a0), 则二次方程 ax2+bx+c=0 有两个实数根.数轴上,原点和它的右

33、边所表示的数是非负数,几何中的距离,图形中的线段、面积、体积的量数也都是非负数.3. 非负数的性质:非负数集合里,有一个最小值,它就是零.例如:a 2 有最小值 0(当 a=0 时) , 也有最小值 0(当 x=1 时). 1x如果一个数和它的相反数都是非负数,则这个数就是零.若 a0 且a 0, 则 a=0; 如果 ab0 且 ba 0,那么 ab=0.有限个非负数的和或积仍是非负数.例如:若 a,b,x 都是实数数,则 a2+b20, 0, a 2 0.bx智浪教育-普惠英才文库若几个非负数的和等于零,则每一个非负数也都只能是零.例如 若 (b3) 2+ =01a1c那么 即 012)(c

34、012ca5.031cba四十九、对称式一.定义1. 在含有多个变量的代数式 f (x,y,z)中,如果变量 x, y, z 任意交换两个后,代数式的值不变,则称这个代数式为绝对对称式,简称对称式.例如: 代数式 x+y, xy, x 3+y3+z33xyz, x 5+y5+xy, ,yx1. 都是对称式.yzxyz其中 x+y 和 xy 叫做含两个变量的基本对称式.2. 在含有多个变量的代数式 f (x,y,z)中,如果变量 x, y, z 循环变换后代数式的值不变,则称这个代数式为轮换对称式,简称轮换式.例如:代数式 a2(bc)+b 2(ca)+c 2(ab), 2x 2y+2y2z+2

35、z2x, ,abc1(xy+yz+zx)( , .)1zyx 222221cabca都是轮换式.显然,对称式一定是轮换式,而轮换式不一定是对称式.二.性质1. 含两个变量 x 和 y 的对称式,一定可用相同变量的基本对称式来表示.这将在下一讲介绍.2. 对称式中,如果含有某种形式的一式,则必含有,该式由两个变量交换后的一切同型式,且系数相等.例如:在含 x, y, z 的齐二次对称多项式中,如果含有 x2 项,则必同时有 y2, z 2 两项;如含有 xy 项,则必同时有 yz, zx 两项,且它们的系数,都分别相等. 故可以表示为:m(x 2+y2+z2)+n(xy+yz+zx) 其中 m, n 是常数.3. 轮换式中,如果含有某种形式的一式,则一定含有,该式由变量字母循环变换后所得的一切同型式,且系数相等.例如:轮换式 a3(bc)+b 3(ca)+c 3(ab)中,有因式 ab 一项, 必有同型式 bc 和ca 两项.4. 两个对称式(轮换式)的和,差,积,商(除式不为零) ,仍然是对称式(轮换式).例如:x+y, xy 都是对称式,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报