收藏 分享(赏)

山西省阳泉市2016届中考(人教版)数学一轮复习导学案:专题28.与圆的有关的性质.doc

上传人:cjc2202537 文档编号:994140 上传时间:2018-05-14 格式:DOC 页数:6 大小:308.50KB
下载 相关 举报
山西省阳泉市2016届中考(人教版)数学一轮复习导学案:专题28.与圆的有关的性质.doc_第1页
第1页 / 共6页
山西省阳泉市2016届中考(人教版)数学一轮复习导学案:专题28.与圆的有关的性质.doc_第2页
第2页 / 共6页
山西省阳泉市2016届中考(人教版)数学一轮复习导学案:专题28.与圆的有关的性质.doc_第3页
第3页 / 共6页
山西省阳泉市2016届中考(人教版)数学一轮复习导学案:专题28.与圆的有关的性质.doc_第4页
第4页 / 共6页
山西省阳泉市2016届中考(人教版)数学一轮复习导学案:专题28.与圆的有关的性质.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、28.与圆的有关性质 题组练习一(问题习题化)1.如图,AB 是的直径,弦 CDAB,垂足为 M,连接 AC、AD、BC、BD,结合条件回答问题:(1)下列结论不成立的是( )A.CM=DM B. =CB BD C.ACD=ADC D.OM=MD(2)若 弦 AB=10 , CD=6 , 那 么 OM 的 长 为 ;( 3) 若 弦 CD 把 分成 1:3的两部分 和 ,则劣弧 所对圆心角度数为_;CD CAD CD (4)如果CAB=40,那么CBA=_;CDB=_; COB=_;(5)在上图中,ADC 叫做O 的_,O 叫做_的外接圆,O 叫做ADC 的_.(6)若 O的半径为 3, BO

2、D=60,则 的长是_.CD (7)若 BOD=60,连接 OC.试判断四边形 OCBD的形状,并加以证明. 知识梳理具体考点内容知识技能要求过程性要求DCBA 题组练习二(知识网络化)2.如图,点 A,B,C,D 都在O 上,ABC=90,AD=3,CD=2,则O 的直径的长是 3.如图,ABC 内接 于O,BAC=120,AB=AC,BD 为O 的直径,AD=6,则 DC= 4.如图,AB是O 的弦,OCAB 于点 C,连 接OA,OB点 P是半 径 OB上任意一点,连接 AP若OA=5cm,OC=3cm,则 AP的长度可能是 cm(写出一个符合条件的数值即可)5.如图,以点 O为圆心的

3、20个同心圆,它们的半径从小到大依次是 1、2、3、4、20,阴影部分是由第 1个圆和第 2个圆,第 3个圆和第 4个圆,第 19个圆和第 20个圆形成的所有圆环,则阴影部分的面积为( )A. 23B. 10C. 9D. 76.如图,已知 AB=AC=AD, CBD=2 BDC, BAC=44,则 CAD的度数为( )A. 68B. 88C. 90D. 1127.如图,若锐角ABC 内接于O,点 D在O 外(与点 C在 AB同侧), 则下列三个结论:A B C D A B C1.圆及其有关概念 2.弧、弦、圆心角的关系3.点与圆的位置关系 4.圆的性质,正多边形与圆5.圆周角与圆心角的关系,直

4、径所对圆周角的性质6.三角形的外心,确定圆的条件7.弧长和扇形的面积2题图 3题图 4题图AB CDEO; ; 中,正确的结论为( )DCsini DCcosDCtantA. B. C. D.8.如图,在半径为 5 的 O 中,弦 AB 8 ,P 是弦 AB 所对的优弧上的动点,连接 AP, 过点 A 作 AP 的垂线交射线 PB 于点 C. 当 PAB 是等腰三角形时,求线段 BC 的长.COBAP 题组练习三(中考考点链接)9.如图 O是正五边形 ABCDE的外接圆,这个正五边形的边长为 a,半径为 R,边心距为 r,则下列关系式错误的是( )A. 22RraB.a2 Rsin36C.a2

5、 rtan36D.r Rcos3610.如图,四边形 ABCD内接于 O,点 E在对角线 AC上, EC BC DC(1)若 CBD39,求 BAD的度数;(2)求证:12ABE O DC2 111.如图, O的半径为 1, A, P, B, C是 O上的四个点. APC= CPB=60.(1)判断ABC 的形状: ;(2)试探究线段 PA, PB, PC之间的数量关系,并证明你的结论;(3)当点 P位于 的什么位置时,四边形 APBC的面积最大?求出最大面积.AB 答案:1.(1)D;(2)4;(3)45;(4)50,40,80;(5)内接三角形,三角形 ACD(不唯一),外心(6) (7)

6、菱形,证明略。2. ; 3. 2 ; 4.6(答案不唯一) ;5.B; 6.B; 7.D; 8. 或 或 ; 8BC56139. A;10.解: D18023910BC又 四边形 为圆内接四边形A782DCB又 A同 弧 所 对 的 圆 周 角 相 等E又由题意知 2BA又 CB21AED111.解:(1)等边三角形;(2) PA+PB=PC.证明:如图 1,在 PC上截取 PD=PA, 连接 AD. APC=60. PAD是等边三角形. PA=AD, PAD=60,又 BAC=60, PAB= DAC. AB=AC. PAB DAC. PB=DC. PD+DC=PC, PA+PB=PC.(3)当点 P为 的中点时,四边形 APBC面积最大.AB 理由如下:如图 2,过点 P作 PE AB,垂足为 E,过点 C作 CF AB,垂足为 F. SPAB = ABPE. SABC = ABCF.1212S 四边形 APBC= AB(PE+CF). 12当点 P为 的中点时, PE+CF=PC.PC为 O的直径.AB 此时四边形 PAD=60 PAD=60面积最大.又 O的半径为 1,其内接正三角形的边长 AB= .3S 四边形 APBC= 2 = .123

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 教育学

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报