1、第十一章 复合材料,11.1概述 11.1.1定义:由传统材料和按传统工艺难以制造的、由两种或两种以上性质完全不同的材料单元组合而成的材料,11.1.2复合材料分类,分类,复合 目的,性能 特点,4. 复合材料,复合材料是由两种或两种以上化学性质或组织结构不同的材料组合而成。复合材料是多相材料,主要包括基本相和增强相。基体相是一种连续相材料,它把改善性能的增强相材料固结成一体,并起传递应力的作用;增强相起承受应力(结构复合材料)和显示功能(功能复合材料)的作用。复合材料既能保持原组成材料的重要特色,又通过复合效应使各组分的性能互相补充,获得原组分不具备的许多优良性能。,复合材料的种类繁多,目前
2、还没有统一的分类方法,下面根据复合材料的三要素来分类。按基体材料分类,有金属基复合材料,陶瓷基复合材料,水泥、混凝土基复合材料,塑料基复合材料,橡胶基复合材料等;按增强剂形状可分为粒子、纤维及层状复合材料;依据复合材料的性能可分为结构复合材料和功能复合材料。,0.1.2 根据材料的性能分类,根据材料在外场作用下其性质或性能对外场的响应不同,材料可分为结构材料和功能材料。,结构材料是指具有抵抗外场作用而保持自己的形状、结构不变的优良力学性能(强度和韧性等),用于结构目的的材料。这种材料通常用来制造工具、机械、车辆和修建房屋、桥梁、铁路等。是人们熟悉的机械制造材料、建筑材料,包括结构钢、工具钢、铸
3、铁、普通陶瓷、耐火材料、工程塑料等传统的结构材料(一般结构材料)以及高温合金、结构陶瓷等高级结构材料。,功能材料是具有优良的电学、磁学、光学、热学、声学、力学、化学和生物学功能及其相互转化的功能,被用于非结构目的的高技术材料。,0.1.3 材料按服役的领域来分类,根据材料服役的技术领域可分为信息材料、航空航天材料、能源材料、生物医用材料等。,信息材料是指用于信息的探测、传输、显示、运算和处理的光电信息材料。信息材料主要包括信息的监测和传感(获取)材料、信息的传输材料、信息的存储材料、信息的运算和处理材料。,航空航天材料主要包括新型金属材料(如先进铝合金、超高强度钢、高温合金、高熔点合金、铍及其
4、合金)、烧蚀防热材料和新型复合材料。此外,还包括一些功能材料,如涂层材料、隔热材料、透明材料、阻尼材料、密封材料、润滑材料、粘合剂材料等。这些材料大部分属于高分子材料和陶瓷材料,也有少量是阻尼合金等金属材料。,能源材料是指能源工业和能源技术所使用的材料,按使用目的不同分为新能源材料、节能材料和储氢材料等。新能源材料包括增值堆用核材料、聚变堆材料、太阳能电池(单晶硅、多晶硅、非晶硅等);节能材料包括非晶体金属磁性材料(用作变压器铁芯的Fe-Mn-B-Si合金)和超导材料(Nb-Ti、Nb-Sn巨型磁体用材料);储氢材料,以及高比能电池(如钠硫电池)等。目前钠硫电池的比能量达137W.h/Kg,而
5、铅蓄电池的比能量只有30W.h/Kg。,生物医用材料是一类合成物质或天然物质或这些物质的复合,它能作用一个系统的整体或部分,在一定时期内治疗、增强或替换机体的组织、器官或功能。 医用金属及合金医用高分子材料包括合成和天然高分子,已被广泛用于韧带、肌腱、皮肤、血管、角膜、人工脏器、骨和牙等人体软、硬组织及器官的修复和制造。医用生物陶瓷包括惰性和活性生物陶瓷、生物玻璃等,如氧化铝瓷、氧化锆瓷、生物碳等以及羟基磷灰石、磷酸三钙陶瓷等。医用复合材料:表面涂层生物活性人工牙根、人工心脏瓣膜人造血管等。,0.1.4 材料按结晶状态分类,单晶材料是由一个比较完整的晶粒构成的材料,如单晶纤维、单晶硅; 多晶材
6、料是由许多晶粒组成的材料,其性能与晶粒大小、晶界的性质有密切的关系。 非晶态材料是由原子或分子排列无明显规律的固体材料,如玻璃、高分子材料。,准晶材料是指准周期性晶体材料的简称,准晶仍然是晶体,准晶中的原子分布有严格的位置序,但位置序无周期性,即没有周期性平移对称关系,在准晶材料中存在不符合传统晶体学的五次、八次、十二次对称轴。 准晶从结构角度看是一种新的物质形态,但实际上它们仅在特定的金属合金中形成,是成分范围较窄的金属间化合物。,0.1.5按材料的尺寸分类,材料按材料的尺寸可分为零维材料、一维材料、二维材料、三维材料。,零维材料即超微粒子,通过Sol-gel法、多相沉积或激光等方法,可以制
7、备出亚微米级的陶瓷或金属粉末,大小1100nm的超微粒比表面积大(可作为高效催化剂)、比表面能高、熔点低、烧结温度下降、扩散速度快、强度高而塑性下降慢、电子态由连续能带变为不连续、光吸收也发生异常现象(可以成为高效微波吸收材料)。,一维材料,如光导纤维由于其信息传输量远比铜、铅的同轴电缆大,而且光纤有很强的保密性,所以发展很快。再比如脆性块状材料在变成细丝后便增加了韧性,可以用来增强其它的块状。实用纤维为碳纤维、硼纤维、陶瓷纤维。纤维中强度和刚度最高的要算晶须。,二维材料(薄膜),如金刚石薄膜、高温超导薄膜、半导体薄膜。由于薄膜的电子所处状态和外界环境的影响,可表现出不同的电子迁移规律,完成特
8、定的电学、光学或电子学功能,如成为绝缘体、铁电体、导体或半导体等,从而有可能作为光学薄膜用于非线性光学、光开关、放大或调幅、敏感与传感元件,用于显示或探测器,用于环保或表面改性的保护膜。 三维材料即块状材料。,0.2 组成-结构-性质-工艺过程之间的关系,材料科学与工程的四个基本要素:合成与加工、组成与结构、性质、使用性能。探索这四个要素之间的关系(图0.2),覆盖从基础学科到工程的全部内容。四个要素之间的密切关系确定了材料科学与工程这一领域,确定了材料科学基础课程的教学线索。,图0.2组成-结构-性质-工艺过程之间 关系示意图,材料的性质是指材料对电、磁、光、热、机械载荷的反应,主要决定于材料的组成与结构。 使用性能是材料在使用状态下表现的行为,它与材料设计、工程环境密切相关。实用性能包括可靠性、耐用性、寿命预测及延寿措施等。 合成与制备过程包括传统的冶炼、铸锭、制粉、压力加工、焊接等,也包括新发展的真空溅射、气相沉积等新工艺,使人工合成材料如超晶格、薄膜材料成为可能。,