收藏 分享(赏)

第六章微生物的代谢.ppt

上传人:yjrm16270 文档编号:9814071 上传时间:2019-09-07 格式:PPT 页数:61 大小:2.77MB
下载 相关 举报
第六章微生物的代谢.ppt_第1页
第1页 / 共61页
第六章微生物的代谢.ppt_第2页
第2页 / 共61页
第六章微生物的代谢.ppt_第3页
第3页 / 共61页
第六章微生物的代谢.ppt_第4页
第4页 / 共61页
第六章微生物的代谢.ppt_第5页
第5页 / 共61页
点击查看更多>>
资源描述

1、第六章微生物的代谢,新陈代谢:生物体进行的所有化学反应和物理反应的总和。 微生物的代谢作用包括:合成代谢和分解代谢,或称同化作用和异化作用。,合成代谢在合成酶系的催化下,由简单的小分子、ATP和还原力H一起合成复杂的生物的大分子的过程。,分解代谢指复杂的有机分子通过分解代谢酶系的催化产生简单分子、能量(ATP)、和还原力H的过程。,分解代谢的三个阶段,将大分子的营养物质降解成氨基酸、单糖、脂肪酸等小分子物质。进一步降解成为简单的乙酰辅酶A、丙酮酸、及能进入TCA循环的中间产物。将第二阶段的产物完全降解生成CO2 , 并将前面形成的还原力(NADH2)通过呼吸吸链氧化、 同时形成大量的ATP。,

2、复杂分子 简单分子+ATP+H(有机物),分解代谢酶系,合成代谢酶系,特点:代谢旺盛代谢极为多样化代谢的严格调节和多样性,微生物多样化的能量代谢特有的合成代谢代谢的调节,第一节微生物的能量代谢,能量代谢是新陈代谢中的核心问题。 中心任务:把外界环境中的各种初级能源转换成对一切生命活动都能使用的能源ATP。,有机物最初能源 日光 通用能源还原态无机物,化能自养菌,化能异养菌,光能营养菌,生物氧化的过程,一般包括三个环节: 底物脱氢(或脱电子)作用(该底物称作电子供体或供氢体)氢(或电子)的传递(需中间传递体,如NAD、FAD等)最后氢受体接受氢(或电子)(最终电子受体或最终氢受体),一、化能异养

3、微生物的生物氧化与产能,(一)发酵:发酵途径:EMP、ED、HMP、PK发酵类型:根据发酵产物不同 (二)呼吸: 有氧呼吸:以分子氧作为最终电子(和氢)受体的生物氧化作用。无氧呼吸:指以无机氧化物(如NO3-,NO2-,SO4-,S2O3-或CO2等)代替分子氧作为最终电子受体的生物氧化作用。,一、化能异养微生物的生物氧化与产能,1. 发酵(fermentation),有机物氧化释放的电子直接交给本身未完全氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物。,有机化合物只是部分地被氧化,因此,只释放出一小部分的能量。,发酵过程的氧化是与有机物的还原偶联在一起的.被还原的有机物来自于初始发

4、酵的分解代谢,即不需要外界提供电子受体。,(1) EMP途径 (Embden-Meyerhof pathway),葡萄糖,葡糖-6-磷酸,果糖-6-磷酸,果糖-1,6- 二磷酸,1,3-二磷酸甘油酸,3-磷酸甘油酸,2-磷酸甘油酸,磷酸烯醇式丙酮酸,丙酮酸,EMP途径意义: 为细胞生命活动提供ATP 和 NADH;桥梁;中间代谢产物;逆向合成多糖;与发酵产物有关。,底物水平磷酸化,底物水平磷酸化,总反应式: C6H12O6+2NAD+2ADP+2Pi2CH3COCOOH+2NADH+2H+2ATP+2H2O,EMP途径关键步骤,1. 葡萄糖磷酸化1.6二磷酸果糖(耗能) 2. 1.6二磷酸果糖

5、2分子3-磷酸甘油醛 3. 3-磷酸甘油醛丙酮酸 总反应式: 葡萄糖+2NAD+2Pi+2ADP 2丙酮酸+2NADH2+2ATPCoA 丙酮酸脱氢酶乙酰CoA, 进入TCA,葡萄糖激活的方式,好氧微生物:通过需要Mg+和ATP的己糖激酶 厌氧微生物:通过磷酸烯醇式丙酮酸-磷酸转移酶系统,在葡萄糖进入细胞时即完成了磷酸化,磷酸果糖激酶,EMP途径的关键酶,在生物中有此酶就意味着存在EMP途径 需要ATP和Mg+ 在活细胞内催化的反应是不可逆的反应,又称2-酮-3-脱氧-6-磷酸葡糖酸(KDPG)裂解途径。 1952年在Pseudomonas saccharophila中发现,后来证明存在于多种

6、细菌中(革兰氏阴性菌中分布较广)。 ED途径可不依赖于EMP和HMP途径而单独存在,是少数缺乏完整EMP途径的微生物的一种替代途径,未发现存在于其它生物中。,(2)ED途径,ED途径,ATP ADP NADP+ NADPH2 葡萄糖 6-磷酸-葡萄糖 6-磷酸-葡萄酸激酶 (与EMP途径连接) 氧化酶 (与HMP途径连接) EMP途径 3-磷酸-甘油醛 脱水酶2-酮-3-脱氧-6-磷酸-葡萄糖酸 EMP途径 丙酮酸 醛缩酶 有氧时与TCA环连接无氧时进行细菌发酵,ED途径,ED途径,ED途径的特点,葡萄糖经转化为2-酮-3-脱氧-6-磷酸葡萄糖酸后,经脱氧酮糖酸醛缩酶催化,裂解成丙酮酸和3-磷

7、酸甘油醛, 3-磷酸甘油醛再经EMP途径转化成为丙酮酸。结果是1分子葡萄糖产生2分子丙酮酸,1分子ATP。 ED途径的特征反应是关键中间代谢物2-酮-3-脱氧-6-磷酸葡萄糖酸(KDPG)裂解为丙酮酸和3-磷酸甘油醛。ED途径的特征酶是KDPG醛缩酶. 反应步骤简单,产能效率低.此途径可与EMP途径、HMP途径和TCA循环相连接,可互相协调以满足微生物对能量、还原力和不同中间代谢物的需要。好氧时与TCA循环相连,厌氧时进行乙醇发酵.,关键反应:2-酮-3-脱氧-6-磷酸葡萄糖酸的裂解 催化的酶:6-磷酸脱水酶,KDPG醛缩酶 相关的发酵生产:细菌酒精发酵 优点:代谢速率高,产物转化率高,菌体生

8、成少,代谢副产物少,发酵温度较高,不必定期供氧。缺点:pH5,较易染菌;细菌对乙醇耐受力低,ATP 有氧时经呼吸链6ATP无氧时进行发酵2乙醇,2ATP NADH+H+ NADPH+H+ 2丙酮酸,ATP C6H12O6 KDPG,ED途径的总反应(续),ED途径,ED途径是在研究嗜糖假单孢菌时发现的,还有荧光、 铜绿、林氏、真氧产碱菌,ED途径在革兰氏阴性菌中分布 较广,几种真菌有。是 EMP途径不完全的替代途径。,ED途径结果:一分子葡萄糖经ED途径最后生成2分子丙酮酸、1分子ATP,1分子NADPH、1分NADH。,ED途径可不依赖于EMP与HMP而单独存在,丙酮酸 有氧进TCA,无氧脱

9、羧为乙醛,进一步还原为乙醇 ED途径不如EMP途径经济,产能少。,(3) HMP途径 (戊糖磷酸途径) (Hexose Monophophate Pathway),HMP途径: 葡萄糖经转化成6-磷酸葡萄糖酸后,在6-磷酸葡萄糖酸脱氢酶的催化下,裂解成5-磷酸戊糖和CO2。 磷酸戊糖进一步代谢有两种结局, 磷酸戊糖经转酮转醛酶系催化,又生成磷酸己糖和磷酸丙糖(3-磷酸甘油醛),磷酸丙糖借EMP途径的一些酶,进一步转化为丙酮酸。 称为不完全HMP途径。 由六个葡萄糖分子参加反应,经一系列反应,最后回收五个葡萄糖分子,消耗了1分子葡萄糖(彻底氧化成CO2 和水),称完全HMP途径。,HMP途径降解

10、葡萄糖的三个阶段,HMP是一条葡萄糖不经EMP途径和TCA循环途径而得到彻底氧化,并能产生大量NADPH+H+形式的还原力和多种中间代谢产物的代谢途径 1. 葡萄糖经过几步氧化反应产生核酮糖-5-磷酸和CO22. 核酮糖-5-磷酸发生同分异构化或表异构化而分别产生核糖-5-磷酸和木酮糖-5-磷酸3.上述各种戊糖磷酸在无氧参与的情况下发生碳架重排,产生己糖磷酸和丙糖磷酸,HMP途径关键步骤:,1. 葡萄糖6-磷酸葡萄糖酸2. 6-磷酸葡萄糖酸5-磷酸核酮糖 5-磷酸木酮糖 5-磷酸核糖参与核酸生成3. 5-磷酸核酮糖6-磷酸果糖+3-磷酸甘油醛(进入EMP,HMP 途径的关键酶系是6-磷酸葡萄糖

11、酸脱氢酶和转酮 一 转醛酶系,其中6磷酸葡萄糖酸脱氢酶催化磷酸已糖酸的脱氢脱羧,而转酮 一 转醛酶系则作用于三碳糖、四碳糖、五碳糖、六碳糖及七碳糖的相互转化。,耗能阶段 C6 2C3 产能阶段 4 ATP 2ATP 2C3 2 丙酮酸2NADH2C6H12O6+2NAD+2ADP+2Pi 2CH3COCOOH+2NADH2+2H+2ATP+2H2O,HMP途径的总反应,6 葡萄糖-6-磷酸+12NADP+6H2O5 葡萄糖-6-磷酸+12NADPH+12H+12CO2+Pi,HMP途径的总反应,HMP途径的重要意义,为核苷酸和核酸的生物合成提供戊糖-磷酸。 产生大量NADPH2,一方面为脂肪酸

12、、固醇等物质的合成提供还原力,另方面可通过呼吸链产生大量的能量。 与EMP途径在果糖-1,6-二磷酸和甘油醛-3-磷酸处连接,可以调剂戊糖供需关系。 途径中的赤藓糖、景天庚酮糖等可用于芳香族氨基酸合成、碱基合成、及多糖合成。 途径中存在37碳的糖,使具有该途径微生物的所能利用利用的碳源谱更为更为广泛。 通过该途径可产生许多种重要的发酵产物。如核苷酸、若干氨基酸、辅酶和乳酸(异型乳酸发酵)等。 HMP途径在总的能量代谢中占一定比例,且与细胞代谢活动对其中间产物的需要量相关。,(4)PK途径:磷酸酮解酶途径,存在于某些细菌如明串珠菌属和乳杆菌属中的一些细菌中。如:肠膜明串珠菌利用HK 途径将葡萄糖

13、分解为乳酸和乙酸,利用PK途径将戊糖分解为乳酸和乙醇。 进行磷酸酮解途径的微生物缺少醛缩酶,所以它不能够将磷酸己糖裂解为2个三碳糖。 磷酸酮解酶途径有两种:磷酸戊糖酮解途径(PK)途径磷酸己糖酮解途径(HK)途径,葡萄糖6-P-葡萄糖 6-P-葡萄糖酸5 -P-核酮糖5 -P-木酮糖,3 -P-甘油醛丙酮酸,乙酰磷酸乙酰CoA乙醛,ATP,ADP,NAD+,NADH+H+,CO2,乳酸,乙醇,异构化作用,NAD+,NADH+H+,磷酸戊糖酮解酶,CoA,Pi,2ADP+Pi,2ATP,-2H,-2H,-2H,NAD+,NADH+H+,磷酸戊糖酮解途径,磷酸戊糖酮解途径的特点:,分解1分子葡萄糖

14、只产生1分子ATP,相当于EMP途径的一半; 几乎产生等量的乳酸、乙醇和CO2,磷酸己糖解酮途径,2葡萄糖2葡萄糖-6-磷酸6-磷酸果糖 6-磷酸-果糖,4-磷酸-赤藓糖 乙酰磷酸,2木酮糖-5-磷酸,2甘油醛 -3-磷酸 2乙酰磷酸,2乳酸,2乙酸,乙酸,磷酸己糖解酮酶,磷酸戊糖解酮酶戊,逆HMP途径,同EMP,乙酸激酶,磷酸己糖酮解途径的特点:,有两个磷酸酮解酶参加反应; 在没有氧化作用和脱氢作用的参与下,2分子葡萄糖分解为3分子乙酸和2分子3-磷酸-甘油醛, 3-磷酸-甘油醛在脱氢酶的参与下转变为乳酸;乙酰磷酸生成乙酸的反应则与ADP生成ATP的反应相偶联; 每分子葡萄糖产生2.5分子的

15、ATP; 许多微生物(如双歧杆菌)的异型乳酸发酵即采取此方式。,2、发酵类型,根据发酵产物的种类有乙醇发酵、乳酸发酵、丙酸发酵、丁酸发酵、混合酸发酵、丁二醇发酵、及乙酸发酵等。,酵母型酒精发酵 同型乳酸发酵 丙酸发酵 混合酸发酵 2,3丁二醇发酵 丁酸发酵,丙酮酸的发酵产物,(1)乙醇发酵,酵母型乙醇发酵细菌型乙醇发酵,C6H12O62CH3COCOOH2CH3CHO2CH3CH2OH,NAD,NADH2,-2CO2,EMP,2ATP,乙醇脱氢酶,酵母菌的乙醇发酵:,概念 菌种 途径 特点 发生条件,该乙醇发酵过程只在pH3.54.5以及厌氧的条件下发生。,日本人肠内酵母感染 导致醉酒,微生物

16、学与第一次世界大战,德国: (Carl Neuberg),丙酮酸,CO2,乙醛,NADH,NAD+,乙醇,磷酸二羟基丙酮,NADH,NAD+,磷酸甘油,甘油,3%的亚硫酸氢钠(pH7),厌氧发酵,(磺化羟基乙醛),第一次世界打战期间德国主要用这种方法 生产甘油产量:1000吨/月,目前的甘油生产方法: 使用的微生物: Dunaliella aslina(一种嗜盐藻类),胞内积累高浓度的甘油从而使细胞的 渗透压保持平衡,生活在盐湖及海边的岩池等盐浓度很高环境,当发酵液处在碱性条件下(PH3.5-4.5),酵母的乙醇发酵会改为甘油发酵。 原因:该条件下产生的乙醛不能作为正常受氢体,结果2分子乙醛间

17、发生歧化反应,生成1分子乙醇和1分子乙酸;,CH3CHO+H2O+NAD+ CH3COOH+NADH+H+ CH3CHO+NADH+H+ CH3CH2OH+ NAD+ 此时也由磷酸二羟丙酮担任受氢体接受3-磷酸甘油醛脱下的氢而生成 -磷酸甘油,后者经-磷酸甘油酯酶催化,生成甘油。,2葡萄糖 2甘油+乙醇+乙酸+2CO2,细菌的乙醇发酵,葡萄糖,2-酮-3-脱氧-6-磷酸-葡萄糖酸,3-磷酸甘油醛 丙酮酸,丙酮酸,乙醇 乙醛,2乙醇,2CO2,2H,2H,+ATP,2ATP,菌种:运动发酵单胞菌等 途径:ED,酵母菌(在pH3.5-4.5时)的乙醇发酵脱羧酶 脱氢酶丙酮酸 乙醛 乙醇通过EMP途

18、径产生乙醇,总反应式为: C6H12O6+2ADP+2Pi 2C2H5OH+2CO2+2ATP 细菌(Zymomonas mobilis)的乙醇发酵通过ED途径产生乙醇,总反应如下:葡萄糖+ADP+Pi 2乙醇+2CO2+ATP 细菌(Leuconostoc mesenteroides)的乙醇发酵通过HMP途径产生乙醇、乳酸等,总反应如下:葡萄糖+ADP+Pi 乳酸+乙醇+CO2+ATP 同型乙醇发酵:产物中仅有乙醇一种有机物分子的酒精发酵 异型乙醇发酵:除主产物乙醇外,还存在有其它有机物分子的发酵,利用Z.mobilis等细菌生产酒精,优点:代谢速率高;产物转化率高;菌体生成少代谢副产物少;

19、发酵温度高;,缺点:pH5较易染菌;耐乙醇力较酵母低,(2)乳酸发酵,乳酸细菌能利用葡萄糖及其他相应的可发酵的糖产生乳酸,称为乳酸发酵。 由于菌种不同,代谢途径不同,生成的产物有所不同,将乳酸发酵又分为同型乳酸发酵、异型乳酸发酵和双歧杆菌发酵。 同型乳酸发酵:(经EMP途径) 异型乳酸发酵:(经HMP途径) 双歧杆菌发酵: (经HK途径磷酸己糖解酮酶途径),葡萄糖,3-磷酸甘油醛,磷酸二羟丙酮,2( 1,3-二-磷酸甘油酸),2乳酸 2丙酮酸,同型乳酸发酵,2NAD+ 2NADH,4ATP,4ADP,2ATP 2ADP,Lactococcus lactis Lactobacillus plan

20、tarum,概念 菌种 途径 特点,异型乳酸发酵:,葡萄糖,6-磷酸葡萄糖,6-磷酸葡萄糖酸,5-磷酸木酮糖,3-磷酸甘油醛,乳酸,乙酰磷酸,NAD+ NADH,NAD+ NADH,ATP ADP,乙醇 乙醛 乙酰CoA,2ADP 2ATP,-2H,概念 菌种 途径 特点,-CO2,(3)混合酸发酵,概念:埃希氏菌、沙门氏菌、志贺氏菌属的一些菌通过EMP途径将葡萄糖转变成琥珀酸、乳酸、甲酸、乙醇、乙酸、H2和CO2等多种代谢产物,由于代谢产物中含有多种有机酸,故将其称为混合酸发酵。 发酵途径:,葡萄糖琥泊酸 草酰乙酸 磷酸烯醇式丙酮酸乳酸 丙酮酸乙醛 乙酰 CoA 甲酸乙醇 乙酰磷酸 CO2

21、H2 乙酸,丙酮酸甲酸裂解酶,乳酸脱氢酶,甲酸-氢裂解酶,磷酸转乙酰酶,乙酸激酶,PEP羧化酶,乙醛脱氢酶,+2H,pH6.2,(4)2,3-丁二醇发酵,葡萄糖乳酸 丙酮酸乙醛 乙酰CoA 甲酸乙醇 乙酰乳酸二乙酰 3-羟基丁酮2,3-丁二醇,CO2 H2,-乙酰乳酸合成酶,-乙酰乳酸脱羧酶,2,3-丁二醇脱氢酶,概念:肠杆菌、沙雷氏菌、和欧文氏菌属中的一些细菌具有-乙酰乳酸合成酶系而进行丁二醇发酵。 发酵途径:,EMP,鉴别肠道细菌的V.P.试验,鉴别原理缩合 脱羧 2丙酮酸 乙酰乳酸 乙酰甲基甲醇碱性条件2,3-丁二醇 二乙酰(与培养基中精氨酸的胍基结合)红色化合物,-CO2,鉴别肠道细菌

22、的产酸产气、甲基红(M.R)试验,产酸产气试验: Escherichia与Shigella在利用葡萄糖进行发酵时,前者具有甲酸氢解酶,可在产酸的同时产气,后者则因无此酶,不具有产气的能力。 甲基红试验:大肠杆菌与产气气杆菌在利用葡萄糖进行发酵时,前者可产生大量的混合酸,后者则产生大量的中性化合物丁二醇,因此在发酵液中加入甲基红试剂时,前者呈红色,后者呈黄色。,大肠杆菌:产酸较多,使pH4.5 产气杆菌: pH4.5,IMViC试验:,= 吲哚(I)、甲基红(M)、V.P.试验(Vi)柠檬酸盐利用(C)共四项试验。用以将大肠杆菌与其形状十分相近的肠杆菌属的细菌鉴别开来。,不同微生物发酵产物的不同

23、,也是细菌分类鉴定的重要依据。,大肠杆菌:,丙酮酸裂解生成乙酰CoA与甲酸,甲酸在酸性条件下可进一步裂解生成H2和CO2,产酸产气,志贺氏菌:,丙酮酸裂解生成乙酰CoA与甲酸,但不能使甲酸裂解产生H2和CO2,产酸不产气,大肠 杆菌:,产气 气杆菌:,V.P.试验阳性 甲基红试验阴性,V.P.试验阴性 甲基红试验阳性,(5)丙酮丁醇发酵丙酮丁醇梭状芽孢杆菌丙酮酸 乙酰辅酶A 乙酰乙酰辅酶A丙酮 乙酰乙酸丙酮酸 丁酸 丁醛 丁醇,微生物学与第一次世界大战,英国:,有机溶剂丙酮和丁醇的需求增加:,丙酮:用于生产人造橡胶; 丁醇:用于生产无烟火药;,当时的常规生产方法: 对木材进行干热分解大约80到100吨桦树、山毛榉、或枫木 生产1吨丙酮,微生物学与第一次世界大战,英国: (Chaim Weizmann),丙酮丁醇羧菌发酵生产丙酮、丁醇(1915), 每100吨谷物可以生产出12吨丙酮和24吨的 丁醇。,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报