1、东北电力大学数学模型论文举重比赛成绩与体重关系问题分析举重问题分析摘 要本文分析了题目条件与表中数据,建立了几个有关举重总成绩和体重的几种模型,并对其进行误差分析。运用数据拟合,最小二乘法等常用方法对数据进行分析和建立模型,并运用回归分析对所建立模型进行检验,最后进行模型的评价和推广。同时还利用 MATLAB 做出分析和判断。用 scatter 函数画出表中总成绩散点图,让数据可视化,从而判断体重与举重成绩大概呈线性关系。用一次函数进行拟合,得到线性模型 C=2.6x+162.1,并据此模型求出了相应的举重总成绩理论值,与实际值进行比较。求得误差为 30.8651,较大,线性模型过于简单粗略。
2、运用 MATLAB 进行二阶拟合求得 C=-0.0345X2+8.16X-49.8857,对模型的建立融合了运动员的生理特点,得到模型为 3 ,假定人体体重有一部分是与成年人的尺寸无关,上述模型作进一步改进。根据统计分析人体中非肌肉重量为 35kg 时,得到模型(1) ,得到0.5278.31Cx模型为算得误差为 7.7245,相对较小。并用回归分析对其进行检验, 发现了一个异常点, 剔除异常点后得到新的模型(3) 0.2752.695*()x,再次用回归分析,没发现异常点,结果比较理想。根据这个模型算得总成绩的实际值与理论值列表如0.18619.3*(45)Cx下:(单位:千克)最后提出 了
3、模型的推广与改进方向。体重54 59 64 70 76 83 91 99 108实际值287.5 307.5 335.0 357.5 367.5 392.5 402.5 420.0 430.0理论值284.8 313.1 334.3 354.5 371.2 387.8 403.9 418.1 432.1关键词:数据拟合、线性回归分析、经验模型1. 问题的重述运动员在高度和体重方面差别很大,为了在举重比赛中对此做出补偿,规定要从运动员举起的重量中减去其体重,以下是奥林匹克运动会上优胜者的举重成绩: 1 54 132.5 155.0 287.52 59 137.5 170.0 307.5 世界记录
4、3 64 147.5 187.5 335.04 70 162.5 195.0 357.5 世界记录5 76 167.5 200.0 367.56 83 180.0 212.5 392.5 世界记录7 91 187.5 213.0 402.58 99 185.0 235.0 420.0 世界记录9 108 195.0 235.0 430.010 超过108 197.5 260.0 457.5结合上表说明举重能力和体重之间关系。 假定体重中有一部分是与成年人的尺寸无关的,提出一个把这种改进融合进去的模型,并讨论两个模型各自的优缺点,然后提出一种经验法则,对不同体重的举重运动员设定障碍,使得比赛受体
5、重因素的影响较小,从而更加公平。2问题的分析1在现代奥运会举重比赛中,比赛前运动员都要称体重,并且最后运动员的成绩只计算抓举和挺举的总成绩,如总成绩相同则赛前体重轻者列前,如再相同,则以赛后即称体重轻者列前。2从表中数据可以得到:级别越高,体重越重,举起的重量也越大,那么可设想同一级别的运动员,体重越大的,举起的重量应该越大。也就是说,运动员的体重与总成绩级别最大体重(千克) 抓举(千克) 挺举(千克) 总重量(千克)1 54 132.5 155.0 287.52 59 137.5 170.0 307.5 世界记录3 64 147.5 187.5 335.04 70 162.5 195.0 3
6、57.5 世界记录5 76 167.5 200.0 367.56 83 180.0 212.5 392.5 世界记录7 91 187.5 213.0 402.58 99 185.0 235.0 420.0 世界记录9 108 195.0 235.0 430.010 超过108 197.5 260.0 457.5应该有着密切的关系。同时已经提出的生理学论证建议肌肉的强度和其横截面的面积成比例1,而生理学已证明肌肉强度近似正比于力量的大小,从这个角度出发建立举重总成绩与体重的关系模型,并用表中数据进行检验。3模型的假设与符号说明1、举重运动员的总成绩是生理条件,心理因素等众多因素共同作用的结果,这
7、里只考虑体重的因素,假设运动员其他条件相差不大。2、符号说明:人的体重x肌肉横截面积S肌肉强度T举重成绩C4模型的准备结合表中也可得:体重越重的,级别越高,举起的重量就越大。表中体重一列是呈上升趋势,抓举、挺举和总重量三列也是呈上升趋势的。综合以上两点观察所得,这个规定暗示了举重总成绩与体重近似成正比。用图形和数据拟合来验证一下观察的结论,把表中所给总成绩和体重的数据用scatter 函数绘制成散点图.55 60 65 70 75 80 85 90 95 100 105300320340360380400420440体体M体体体体体体体体体体体从上图可以直观地看出,体重越大,举重总成绩越好,因
8、此,举重总成绩与体重大概成线性关系。下面我们用一次函数x=aC+b 对它们进行拟合。得到拟合后的函数是:C=2.6153x+162.0959,拟合的图像(图中直线)如图:50 60 70 80 90 100 110300350400450体 体 M体 体 体 体体体体体体体体从上图看出实际的举重成绩值在拟合的线性函数上下波动,说明拟合的函数与实际具有一定的误差,根据拟合的函数,我们求出了相对应的一些理论值,并用scatter 函数画出它的散点图(用星号表示),再跟实际值进行对比,从图上看出每个体重值对应的总成绩实际值(小圆圈)和总成绩理论值(星号)不是很吻合,误差比较明显,计算得到误差为30.
9、8651,说明用线性函数对举重总成绩与体重进行拟合的模型过于简单、粗略,考虑的因素比较少。5模型的建立与求解1.模型的建立一般举重运动员的举重能力是用举重成绩来衡量,而举重运动员的举重能力与其肌度近似成正比关系,从而举重运动员的举重总成绩与其肌肉强度近似成正比,即11(0)CkTk为 常 数 且由运动生理学得知,肌肉的强度与其横截面积近似成正比,即: 220TkS为 常 数 且假设肌肉的横截面积正比于身高的平方,人的体重正比于身高的三次方 ,即可得:, 2334,43,4, 0Skhxkk为 常 数 且从 可得: , 34xkh134k代 入得 : (7)2232 3131144xCkhxk从
10、而可得举重运动员举重总成绩与其体重的关系为:( ) 23Ckx2314k上述模型是根据比例关系推导得出,又称为经验模型。2、模型的求解利用题目表格中所给的体重和举重总成绩数据,运用曲线拟合求出上述模型的系数K。得到K=20.0880, 于是举重运动员的举重总成绩与体重的关系模型为 230.8Cx这个模型主要是依据比例关系得到的,假设条件都比较粗糙,是比较粗略的计算模型。通过这个模型只能大概得到举重总成绩与体重的关系,但计算得到的理论值与实际值不是很相符。由于人的重量并非完全均匀的,并且通过查找资料得知,人的体重并不完全正比于身高的三次方,有人做过统计 得到人的体重和身高的关系为2.317xh假
11、设人的体重跟身高的关系为 1xk同时由于人体中不同部位的肌肉横截面积不相同,所以横截面积不一定完全正比于身高的平方。假设肌肉横截面积跟身高的关系为 , 类似于上2Skh面的推导,可得到 ( ) 3Ckx2314k利用表格中的数据对上述模型进行求解,首先将上述函数化成对数形式 , lglgkx23然后利用表中的数据用线性最小二乘法和 MATLAB 软件编程,得 K=28.3301 =0.5207 的函数为0.5278.31Cx用上述模型计算得到的理论值(保留小数点后一位)见下表(单位:千克)表1下面对此模型进行数据检验:利用scatter 函数画出表格中举重总成绩实际值的散点图(用小圆圈表示),
12、并画出举重总成绩与体重拟合后的函数3 ,得到图象如下:50 60 70 80 90 100 110280300320340360380400420440460体重54 59 64 70 76 83 91 99 108总成绩理论值287.0 304.4 321.4 341.2 360.4 382.2 406.4 429.9 455.6从上图可以看出,实际数据在函数曲线上下波动,第一个点跟理论值非常接近,而第八个点则跟理论值偏差比较大。根据拟合的函数,我们求出了相对应的一些理论值(单位:千克)体重54 59 64 70 76 83 91 99 108总成绩实际值287.5 307.5 335.0
13、357.5 367.5 392.5 402.5 420.0 430.0总成绩理论值287.0 304.4 321.4 341.2 360.4 382.2 406.4 429.9 455.6根据拟合的函数,求出了相对应的一些理论值体重54 59 64 70 76 83 91 99 108总成绩实际值287.5 307.5 335.0 357.5 367.5 392.5 402.5 420.0 430.0总成绩理论值297.8 313.4 328.5 345.9 362.8 381.7 402.5 422.6 444.4计算得到它们的误差为25.8672 , 因此此模型拟合的效果比模型好,用它来描
14、3 述举重运动员的总成绩和体重的关系比较准确,最后得到模型为:(15)0.5278.31Cx6模型结果的分析与检验将 化成对数形式 ,再用回归分析中对此模CkxlglgCkx型进行检验。对此模型进行检验。计算 lnK=3.3439 =0.5775, 跟用 polyfit 函数拟合的结果相同。举重运动员的举重总成绩和体重的关系模型 1 为:0.5278.31Cx7模型的推广与改进方向假设:人的体重可以看成肌肉重量和非肌肉重量,其中非肌肉的重量是与成年人的尺寸无关,除了肌肉重量之外其他重量为 则可0W得到关系式:(1)04xWkh其他假设条件和上面的模型一样,类似于上面的推导,可得到举重成绩 C
15、与肌肉重量 W 的关系为:0()CKx(2)目标函数: 0()CKxW3124,k其 中 。模型求解:0logllog()CKxW假设 =35 千克,然后利用表中的数据用线性最小二乘法得到拟 0W合后的函数为 : 0.275132.695*(3)x即举重运动员的举重总成绩与体重之间的关系模型为: 0.275.()Cx画出图像如下:55 60 65 70 75 80 85 90 95 100 105300320340360380400420440体体M体体体体体体体体体体体举重总成绩与体重之间的关系模型图从上图可以看出拟合的曲线没有完全经过实际值所在的点,56、85 公斤级的比赛的运动员的成绩基
16、本上是经过模型 2 所拟合出的曲线,其他的点在拟合曲线上下波动。通过计算,拟合的成绩与实际成绩之间的标准差是 12.2078,显然该模型比模型 1 拟合效果更好。猜想:能否找到误差更小的数学模型来表示举重总成绩与体重之间的关系。于是将(2)式化为:(5)(45)CKx将(5)式转化成一元线性函数 ,根据表中数logllog(4)x据,用 polyfit(x,y) 拟合,得到 K=177.9023, =0.2142 ,即得到总成绩和体重的关系式是:(6)0.197318.924*(5)Cx从而改进后的模型为:0.197318.924*(5)Cx8模型的优缺点在所给的数据中,因为不知道超过 108
17、kg 的运动员的具体体重,为了提高模型的准确性,故没有将超过 108kg 的运动员的总成绩列入考虑的范围。优点:(1)利用生理学论证建议肌肉的强度和其横截面的面积成比例这个强度子模型和参考经验公式,推导出模型 ,并对模230.179Cx型进行改进,得到优化后的模型为 ,通过线性回归分.528.3x析验证了优化后模型的可靠性。(2 考虑到人的体重中的非肌肉因素导出模型。0.27513.695*(3)Cx(3)此模型能使举重比赛受体重因素影响较小 ,从而更加公平。缺点:由于表中只提供了体重的数据而没有其他数据,例如高度,臂长之类的数据,以及运动员体积,因此所建立的不同模型都产生了不同程度的误差,运
18、动员的心理因素等其他各方面因素,以及环境因素也将影响比赛成绩,未纳入考虑影响范围之列。参考文献1 姜启源数学模型(第四版)M 北京:高等教育出版社,20102 韩中庚数学建模方法及其应用(第二版)M 北京:高等教育出版社,2009 3,浙江大学数模讲义, http:/ , 2007 年.4刘承平,数学建模方法,北京:高等教育出版社,2002.7.5李云霞等,8 运会优秀举重运动员身体成分的调查报告,体育科学,1999 年.6 张兴永,数学建模,北京:煤炭工业出版社,2005.7 张建勋,数学软件与数学实验,北京:清华大学出版社,2004.8 张学敏,MATLAB 基础及应用,北京:中国电力出版
19、社,2012.9 张杰,运筹学模型及其应用,北京:中国电力出版社,2012.附 录W1=48 53 63 75;C1=185 225 242.5 245;W2=40:0.01:80;C2=1.9494*W2+107.9028 ;plot(W1,C1,o,W2,C2)W=56 62 69 77 85 94 105;C=305 325 357.5 376.5 390 405 425;plot(W,C,o) ;grid on;polyfit(W,C,1)ans =2.3944 181.6923即拟合得到 C=2.3944W+181.6923W=56 62 69 77 85 94 105;C=305
20、325 357.5 376.5 390 405 425; K=W.(2/3)CK =20.1779W1=56 62 69 77 85 94 105;C1=305 325 357.5 376.5 390 405 425;W2=55:0.1:110;C2=20.1779*W2.0.67;plot(W1,C1,o,W2,C2);grid onx=56 62 69 77 85 94 105;y=305 325 357.5 376.5 390 405 425;x1=x-45;y2=lgy;x2=lgx;n=9;4x=56 62 69 77 85 94 105;x1=x;x2=x;x3=x;x4=x;x5=x;x6=x;y1=162.0959+2.6153*x1;y2=20.0880*x1.(2/3);y3=29.7427*x1.0.5775;y4=118.8752*(x1-35).0.3039;y5=177.9023*(x1-45).0.2142;y6=181.3993*(x6-45).0.2092;Y=y,y1,y2,y3,y4,y5,y6;bar(x,Y);