收藏 分享(赏)

广东省潮汕2011-2012学年下学期高三两校联考试题数学(文).doc

上传人:kpmy5893 文档编号:9564171 上传时间:2019-08-15 格式:DOC 页数:9 大小:508.50KB
下载 相关 举报
广东省潮汕2011-2012学年下学期高三两校联考试题数学(文).doc_第1页
第1页 / 共9页
广东省潮汕2011-2012学年下学期高三两校联考试题数学(文).doc_第2页
第2页 / 共9页
广东省潮汕2011-2012学年下学期高三两校联考试题数学(文).doc_第3页
第3页 / 共9页
广东省潮汕2011-2012学年下学期高三两校联考试题数学(文).doc_第4页
第4页 / 共9页
广东省潮汕2011-2012学年下学期高三两校联考试题数学(文).doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、 广东省潮汕 20112012 学年度第二学期高三两校联考 数学(文科)试卷本试卷 21 小题,满分 150 分考试用时 120 分钟第一部分 (选择题 满分50 分)一选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的1 设 全 集 ,1|,03|,2xBxARU 则 图 中 阴 影部 分 表 示 的 集 合 为 ( )A. 0|xB. |C. 3|D. |x2若复数 是实数( i 是虚数单位) ,则实数 a 的值为( )(1)iaA2 B-1 C-2 D1 3. 已知函数 )在区间sin(0yx的图像如右,那么 ( )0,A1 B2 C D

2、 134某选手参加选秀节目的一次评委打分如茎叶图 所示,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A B C D86.5,1286.5,186,1.286,1.55.已知 的三个顶点 A,B,C 及平面内一点 P 满足: ,若实数 满足:C APBC0,则 的值为( )PA. B.1 C.2 D.3236某几何体的三视图如图所示,则该几何体的体积为( )A B2131C D467已知关于 x,y 的不等式组 ,04ykx所表示的平面区域的面积为 l6,则 k 的值为( )A -l B0 C 1 D 3yx2 11ODCEBAM N F8若函数 在 R 上既是奇函数,又是减

3、)10()1() aakxf xx且函数,则 的图象是( )loga9 直线 230xy与 y轴的交点为 P,点 P 把圆 2(1)5xy的直径分为两段,则其长度之比为 ( ) A. 7或 B. 74或 C. 75或 D. 76或10.偶函数 满足 ,且在 x0,1时, ,则关于 x 的方)(xf )1()(xff xf1)(程 ,在 x0,3 上解的个数是( )91A 1 B2 C.3 D.4第二部分 (非选择题 满分100 分)二填空题:本大题共4小题,每小题 5分,满分20分 (一)必做题:第 11、12 、13 题为必做题,每道试题考生都必须作答11 设曲线 xy1在点 ),(处的切线

4、与直线 10axy垂直,则 a 12已知双曲线 的离心率为 ,则其渐近线方程为 )0,2ba3213把形如 (,)nMmN的正整数表示为各项都是整数、公差为 2 的等差数列的前m 项和,称作“对 M 的 m 项划分”。例如: 29315,称作“对 9 的 3 项划分” ;把 64 表示成 364157,称作“对 64 的 4 项划分”.据此,对 324 的 18项划分中最大的数是 (二)选做题(14、15 题,考生只能从中选做一题)14 (坐标系与参数方程选作题 )在极坐标系中,过点 且平行于极轴的直线的极坐标(2,)3方程为_ _ 15 (几何证明选讲选作题) 如图,梯形 中,ACD为中位线

5、,对角线 、 与EFBDACEF分别交于 、 ,如果MN,6,2则 三解答题:本大题共6小题,满分 80分,解答应写出文字说明、证明过程或演算步骤16 (本题满分 12 分)在平面直角坐标系 xoy中,点 )cos,21(P在角 的终边上,点 2(sin,1)Q在角的终边上,且 OQ求 2cs的值;求 in()的值。17 (本题满分 12 分)调查某初中 1000 名学生的肥胖情况,得下表:已知从这批学生中随机抽取1 名学生,抽到偏瘦男生的概率为 0.15。(1 )求 x的值;(2 )若用分层抽样的方法,从这批学生中随机抽取 50 名,问应在肥胖学生中抽多少名?(3 )已知 193y, z,肥

6、胖学生中男生不少于女生的概率。18 (本题满分 14 分)已知 na是公差为正数的等差数列,首项 31a,前 n项和为 nS,数列 nb是等比数列,首项 .20,1,321bSab且(1)求 n和 的通项公式;(2)令 ,求 nT.nbnT1321)()( )32,(偏瘦 正常 肥胖女生(人) 100 173 y男生(人) x177 z19 (本题满分 14 分)如图,四棱锥 PABCD 的底面为矩形,且 AB ,BC 1,E , F 分别为 AB,PC 中点.2(1 )求证:EF 平面 PAD;(2 )若平面 PAC平面 ABCD,求证:平面 PAC平面 PDE.20. (本题满分 14 分

7、) 已知函数 (xf是定义在实数集 R上的奇函数,当 0x时, xaxfln)(,其中Ra(1 )求函数 )的解析式;(2 )若函数 (f在区间 )1 ,(上是单调减函数,求 的取值范围;(3 )试证明对 ,存在 e,使 1)()(/eff21 (本题满分 14 分) 在平面直角坐标系 xOy 中,A(2 a,0) ,B(a ,0),a 为非零常数,动点 P 满足,记点 P 的轨迹为曲线 CBPA2(1 )求曲线 C 的方程;(2 )曲线 C 上不同两点 Q (x1,y 1),R (x2,y 2)满足 ,点 S 为 R 关于 x 轴的对称 AR AQ点试用 表示 x1,x 2,并求 的取值范围

8、;当 变化时,x 轴上是否存在定点 T,使 S,T,Q 三点共线,证明你的结论(第 19 题)A BCDEFP20112012 学年度第二学期潮汕高三两校联考数学(文科)参考答案及评分标准BDBCD ACAAC11. 1 12. 13.35 14. 15.2xy3sin316 ( 1) 2cos, 5 分(2 )由 31得 sin2, 32cos, 7 分4(,),)i,5PQ13,cos,s010ins()sincosin1i12 分17解:(1)由题意可知, 15.0x, x150(人) ; 3 分(2 )由题意可知,肥胖学生人数为 40zy(人) 。设应在肥胖学生中抽取m人,则1054,

9、 20(人)答:应在肥胖学生中抽 20 名。 7 分(3 )由题意可知, 4zy,且 193y, z,满足条件的( , )有( 193,207) , (194,206) , (207 ,193) ,共有 15 组。设事件 A:“肥胖学生中男生不少于女生” ,即 zy,满足条件的( y, z)有(193,207) , (194 ,206) , (200,200) ,共有 8 组,所以 158)(P。答:肥胖学生中女生少于男生的概率为 15。 12 分18: 解: (1)设 na公差为 ,dnb公比为 q,依题意可得:31290q, 4 分解得: ,.d或 8,37d(舍去). 6 分13;2nn

10、ab 8 分(2 ) nn bbnbT1321 2)()(12又 11 分n )()( 两式作差可得: nn214 分211Tn19证明:(1)方法一:取线段 PD 的中点 M,连结 FM,AM因为 F 为 PC 的中点,所以 FMCD,且 FM CD12因为四边形 ABCD 为矩形,E 为 AB 的中点,所以 EACD,且 EA CD12所以 FMEA ,且 FMEA 所以四边形 AEFM 为平行四边形所以 EFAM 5 分又 AM平面 PAD,EF 平面 PAD,所以 EF平面 PAD 7 分方法二:连结 CE 并延长交 DA 的延长线于 N,连结 PN因为四边形 ABCD 为矩形,所以

11、ADBC ,所以BCE ANE,CBENAE又 AEEB,所以CEBNEA所以 CENE 又 F 为 PC 的中点,所以 EFNP 5 分又 NP平面 PAD,EF平面 PAD,所以 EF平面 PAD 7 分方法三:取 CD 的中点 Q,连结 FQ,EQ 在矩形 ABCD 中,E 为 AB 的中点,所以 AEDQ,且 AEDQ所以四边形 AEQD 为平行四边形,所以 EQAD又 AD平面 PAD,EQ平面 PAD,所以 EQ平面 PAD2 分A BCDEFPNA BCDEFQPA BCDEFPM因为 Q,F 分别为 CD,CP 的中点,所以 FQPD又 PD平面 PAD,FQ平面 PAD,所以

12、 FQ平面 PAD 又 FQ,EQ 平面 EQF,FQ EQQ ,所以平面 EQF 平面 PAD 5 分因为 EF平面 EQF,所以 EF平面 PAD 7 分(2 ) 方法一:设 AC,DE 相交于 GAB DC,E 为 AB 中点.AEGCDG 21CADGAB ,BC 12 6,3EA 31,1ACGD 2263EEADE AC 11 分平面 PAC平面 ABCD,DE平面 ABCD,DE 平面 PAC, 13 分又 DE平面 PDE,所以平面 PAC平面 PDE 14 分方法二:设 AC,DE 相交于 G在矩形 ABCD 中,因为 AB BC,E 为 AB 的中点.所以 2DAAE CD

13、DA 2又DAECDA,所以DAECDA,所以ADE DCA又ADECDEADC90,所以DCA CDE90由DGC 的内角和为 180,得DGC90 即 DEAC 11 分因为平面 PAC平面 ABCD因为 DE平面 ABCD,所以 DE平面 PAC, 13 分又 DE平面 PDE,所以平面 PAC平面 PDE 14 分20. 解: 0)(f 1 分0x时, )ln()()(xaxff 3 分,所以 0 ,)ln( , ,lxaxf4 分函数 )(f是奇函数,则 f在区间 )1 ,(上单调递减,当且仅当 在区间 ) ,1(上单调递减,当 0x时, xaxfln), xaf(/ 6 分由 )(

14、/f得 8 分,x1在区间 ) ,的取值范围为 )0 ,1( 8 分所以 a的取值范围为 ,( 10 分 11)1)(eaeef 11 分,解 /f得 13 分,因为 e1,所以 为所求 14 分.21解 (1)设点 P 坐标为(x ,y)由 ,PBA2得 ,平方整理,得 x2y 22 a2 (x 2a)2 y2 2(x a)2 y2所以曲线 C 的方程为 x2y 2 2a23 分(2 ) (x 12 a,y 1), ( x22 a,y 2),因为 , AQ AR AQ AR且 ,即x2 2a (x1 2a)y2 y1 ) x2 x1 2a (1 )y2 y1 )因为 Q,R 在曲线 C 上,

15、所以 x12 y12 2a2, x22 y22 2a2 )消去 y1,y 2,得 x2x 1a (1),由,得 7 分3,因为 ax 1,x 2 a,2 2所以 a a a, a a a,且 023 2 2 2 3 12 2解得 32 3 2 2 2又 Q,R 不重合,所以 1 故 的取值范围为32 ,1 )(1,3 2 10 分2 2方法一存在符合题意的点 T(a, 0) ,证明如下:(x 2a,y 2), (x 1a,y 1), TS TQ要证明 S,T, Q 三点共线,只要证明 , TQ TS即(x 2a) y1(x 1a)(y 2)0因为 y2y 1又只要(x 2a) y1( x1a)

16、 y10,若 y10 ,则 y20 ,成立,若 y10 ,只要 x2x 1a(1 )0,由知,此式成立所以存在点 T( a,0) ,使 S,T,Q 三点共线14 分方法二探究方法:假设存在符合题意的点 T(m,0 ) 则 (x 2m,y 2), (x 1m,y 1),由 S,T,Q 三点共线,得 , TS TQ TQ TS从而(x 2m) y1y 2(x1m),即 (x2m) y1y 1(x1m) 0,若 y10 ,则 y20 ,成立,若 y10 ,则(x 2m)(x 1m)0 ,即 x2x 1m (1) 0,又 x2x 1a (1),所以( am)(1)0,因为 A 在圆 C 之外,所以 0,所以ma14 分

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报