1、精选高中模拟试卷第 1 页,共 15 页苏尼特右旗实验中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 复数 Z= (i 为虚数单位)在复平面内对应点的坐标是( )A(1,3) B(1,3) C(3,1) D(2,4)2 已知全集为 R,集合 A=x|( ) x1,B=x|x 26x+80,则 A( RB)=( )Ax|x0 Bx|2x4 Cx|0x2 或 x4 Dx|0x2 或 x43 在等差数列 中,已知 ,则 ( )A12 B24 C36 D484 执行如图所示的程序框图,若输出的 S=88,则判断框内应填入的条件是( )Ak7 Bk6 Ck5
2、 Dk45 函数 f(x)=sinx(0)在恰有 11 个零点,则 的取值范围( )A C D时,函数 f(x)的最大值与最小值的和为( )Aa+3 B6 C2 D3a6 若偶函数 f(x)在(,0)内单调递减,则不等式 f(1)f(lg x)的解集是( )A(0,10) B( ,10) C( ,+) D(0, ) (10,+ )精选高中模拟试卷第 2 页,共 15 页7 设函数 f(x)满足 f(x+)=f(x)+cosx,当 0x时,f(x)=0,则 f( )=( )A B C0 D8 圆 C1:(x+2) 2+(y2) 2=1 与圆 C2:(x2) 2+(y5) 2=16 的位置关系是(
3、 )A外离 B相交 C内切 D外切9 用秦九韶算法求多项式 f(x)=x 65x5+6x4+x2+0.3x+2,当 x=2 时,v 1的值为( )A1 B7 C 7 D510在ABC 中,sinB+sin(A B)=sinC 是 sinA= 的( )A充分非必要条件 B必要非充分条件C充要条件 D既不充分也非必要条件11如图,正方体 ABCDA1B1C1D1的棱线长为 1,线段 B1D1上有两个动点 E,F,且 EF= ,则下列结论中错误的是( )AAC BEBEF平面 ABCDC三棱锥 ABEF 的体积为定值D异面直线 AE,BF 所成的角为定值12某校在高三第一次模拟考试中约有 1000
4、人参加考试,其数学考试成绩近似服从正态分布,即( ),试卷满分 150 分,统计结果显示数学考试成绩不及格(低于 90 分)的人数占210,XNa0总人数的 ,则此次数学考试成绩在 100 分到 110 分之间的人数约为( )(A) 400 ( B ) 500 (C) 600 (D) 800二、填空题13在极坐标系中,直线 l 的方程为 cos=5,则点(4, )到直线 l 的距离为 精选高中模拟试卷第 3 页,共 15 页14已知命题 p:实数 m 满足 m2+12a27am(a0),命题 q:实数 m 满足方程 + =1 表示的焦点在 y 轴上的椭圆,且 p 是 q 的充分不必要条件,a
5、的取值范围为 15( 2) 7的展开式中, x2的系数是 16已知函数 y=f(x)的图象是折线段 ABC,其中 A(0,0)、 、C(1,0),函数 y=xf(x)(0x1)的图象与 x 轴围成的图形的面积为 17如图,ABC 是直角三角形,ACB=90,PA平面 ABC,此图形中有 个直角三角形18函数 f(x)=log a(x1)+2(a0 且 a1)过定点 A,则点 A 的坐标为 三、解答题19(本小题满分 12 分)已知等差数列 的前 项和为 ,且 , nnS901524S(1)求 的通项公式 和前 项和 ;nanaS(2)设 , 为数列 的前 项和,若不等式 对于任意的 恒成立,求
6、实数 的1()bnbnt*nNt取值范围20本小题满分 10 分选修 :坐标系与参数方程选讲4在直角坐标系 中,直线的参数方程为 为参数,在极坐标系与直角坐标系 取相同的xoy235xty xOy精选高中模拟试卷第 4 页,共 15 页长度单位,且以原点 为极点,以 轴正半轴为极轴中,圆 的方程为 OxC25sin求圆 的圆心到直线的距离;C设圆 与直线交于点 ,若点 的坐标为 ,求 AB、 P(3,5)PAB21定义在 R 上的增函数 y=f(x)对任意 x,yR 都有 f(x+y)=f(x)+f(y),则(1)求 f(0); (2)证明:f(x)为奇函数;(3)若 f(k3 x)+f(3
7、x9x2)0 对任意 xR 恒成立,求实数 k 的取值范围22已知集合 A=x|a1x2a+1,B=x|0x1(1)若 a= ,求 AB(2)若 AB= ,求实数 a 的取值范围精选高中模拟试卷第 5 页,共 15 页23如图所示,已知在四边形 ABCD 中,ADCD,AD=5,AB=7 ,BD=8,BCD=135 (1)求BDA 的大小(2)求 BC 的长24如图,矩形 ABCD 和梯形 BEFC 所在平面互相垂直,BECF,BCCF, ,EF=2,BE=3,CF=4()求证:EF平面 DCE;()当 AB 的长为何值时,二面角 AEFC 的大小为 60精选高中模拟试卷第 6 页,共 15
8、页苏尼特右旗实验中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】A【解析】解:复数 Z= = =(1+2i)(1i)=3+i 在复平面内对应点的坐标是(3,1)故选:A【点评】本题考查了复数的运算法则、几何意义,属于基础题2 【答案】C【解析】解: 1= ,x0,A=x|x0;又 x26x+80(x 2)(x4) 0,2x4B=x|2x4,RB=x|x2 或 x4,ARB=x|0x2 或 x4,故选 C3 【答案】 B【解析】,所以 ,故选 B答案:B4 【答案】 C【解析】解:程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前 1 0第
9、一圈 2 2 是第二圈 3 7 是精选高中模拟试卷第 7 页,共 15 页第三圈 4 18 是第四圈 5 41 是第五圈 6 88 否故退出循环的条件应为 k5?故答案选 C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误5 【答案】A【解析】A C D恰有 11 个零点,可得 5 6,求得 1012,故选:A6 【答案】D【解析】解:因为 f(x)为偶函数,所以 f(x)=f(|x|),因为 f(x
10、)在(,0)内单调递减,所以 f(x)在(0, +)内单调递增,由 f( 1)f(lg x),得|lg x|1,即 lg x1 或 lg x1,解得 x10 或 0x 故选:D【点评】本题考查了函数的单调性与奇偶性的综合应用,在解对数不等式时注意对数的真数大于 0,是个基础题7 【答案】D【解析】解:函数 f(x)( xR)满足 f(x+)=f(x )+cosx,当 0x 时, f(x)=1 ,f( )=f( ) =f( )+cos =f( )+cos +cos =f( )+cos +cos =f( )+cos +cos =f( )+cos +cos +cos =0+cos cos +cos=
11、 故选:D精选高中模拟试卷第 8 页,共 15 页【点评】本题考查抽象函数以及函数值的求法,诱导公式的应用,是基础题,解题时要认真审题,注意函数性质的合理运用8 【答案】D【解析】解:由圆 C1:(x+2) 2+(y2) 2=1 与圆 C2:(x 2) 2+(y5) 2=16 得:圆 C1:圆心坐标为( 2,2),半径 r=1;圆 C2:圆心坐标为(2,5),半径 R=4两个圆心之间的距离 d= =5,而 d=R+r,所以两圆的位置关系是外切故选 D9 【答案】C【解析】解:f(x)=x 65x5+6x4+x2+0.3x+2=(x5)x+6)x+0)x+2)x+0.3 )x+2,v0=a6=1
12、,v1=v0x+a5=1( 2)5= 7,故选 C10【答案】A【解析】解:sinB+sin(AB)=sinC=sin(A+B),sinB+sinAcosBcosAsinB=sinAcosB+cosAsinB,sinB=2cosAsinB,sinB0,cosA= ,A= ,sinA= ,当 sinA= ,A= 或 A= ,故在ABC 中,sinB+sin(A B)=sinC 是 sinA= 的充分非必要条件,故选:A精选高中模拟试卷第 9 页,共 15 页11【答案】 D【解析】解:在正方体中,ACBD,AC平面 B1D1DB,BE 平面 B1D1DB,ACBE,故 A 正确;平面 ABCD平
13、面 A1B1C1D1,EF平面 A1B1C1D1,EF平面 ABCD,故 B 正确;EF= ,BEF 的面积为定值 EF1= ,又 AC平面 BDD1B1,AO 为棱锥 ABEF 的高,三棱锥 ABEF 的体积为定值,故 C 正确;利用图形设异面直线所成的角为 ,当 E 与 D1重合时 sin= , =30;当 F 与 B1重合时 tan= ,异面直线 AE、BF 所成的角不是定值,故 D 错误;故选 D12【答案】A【解析】 P(X90)P(X110) ,P(90X 110)1 ,P(100X 110) ,1000 400. 故选 A.110 15 45 25 25二、填空题13【答案】 3
14、 【解析】解:直线 l 的方程为 cos=5,化为 x=5点(4, )化为 点到直线 l 的距离 d=52=3故答案为:3【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题精选高中模拟试卷第 10 页,共 15 页14【答案】 , 【解析】解:由 m27am+12a20(a0),则 3am 4a即命题 p:3am4a,实数 m 满足方程 + =1 表示的焦点在 y 轴上的椭圆,则 ,解得 1m2,若 p 是 q 的充分不必要条件,则 ,解得 ,故答案为 , 【点评】本题考查充分条件、必要条件,一元二次不等式的解法,根据不等式的性质和椭圆的性质求出 p,q的等价条件是解决本题的关键
15、15【答案】280 解: ( 2) 7的展开式的通项为 = 由 ,得 r=3x2的系数是 故答案为:280 16【答案】 【解析】解:依题意,当 0x 时,f(x)=2x,当 x1 时,f(x)=2x+2精选高中模拟试卷第 11 页,共 15 页f( x) =y=xf(x)=y=xf(x)(0x1)的图象与 x 轴围成的图形的面积为S= + = x3 +( +x2) = + =故答案为:17【答案】 4 【解析】解:由 PA平面 ABC,则PAC ,PAB 是直角三角形,又由已知ABC 是直角三角形,ACB=90所以 BCAC ,从而易得 BC平面 PAC,所以 BCPC ,所以PCB 也是直
16、角三角形,所以图中共有四个直角三角形,即:PAC,PAB ,ABC,PCB故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键18【答案】 (2,2) 【解析】解:log a1=0,当 x1=1,即 x=2 时,y=2,则函数 y=loga(x1)+2 的图象恒过定点 (2,2)故答案为:(2,2)【点评】本题考查对数函数的性质和特殊点,主要利用 loga1=0,属于基础题三、解答题19【答案】【解析】【命题意图】本题考查等差数列通项与前 项和、数列求和、不等式性质等基础知识,意在考查逻n辑思维能力、运算求解能力、代数
17、变形能力,以及方程思想与裂项法的应用精选高中模拟试卷第 12 页,共 15 页20【答案】【解析】 :25sinC2:5sinC ,即圆 的标准方程为 2:0xy 2()xy直线的普通方程为 30xy所以,圆 的圆心到直线的距离为 32由 ,解得 或 22(5)3xy152xy51xy所以 21【答案】 【解析】解:(1)在 f(x+y)=f(x)+f(y)中,令 x=y=0 可得,f (0)=f (0)+f(0),则 f(0)=0 ,(2)令 y=x,得 f(xx)=f(x)+f(x),又 f(0)=0 ,则有 0=f(x)+f( x),即可证得 f(x)为奇函数;2 22|()()(3)(
18、51)3PAB精选高中模拟试卷第 13 页,共 15 页(3)因为 f(x)在 R 上是增函数,又由(2)知 f(x)是奇函数,f(k3 x) f(3 x9x2)=f(3 x+9x+2),即有 k3x3 x+9x+2,得 ,又有 ,即 有最小值 2 1,所以要使 f(k3 x)+f(3 x9x2)0 恒成立,只要使 即可,故 k 的取值范围是(,2 1)22【答案】【解析】解:(1)当 a= 时,A=x| ,B=x|0x1AB=x|0x1(2)若 AB=当 A=时,有 a12a+1a2当 A时,有2a 或 a2综上可得, 或 a2【点评】本题主要考查了集合交集的求解,解题时要注意由 AB=时,
19、要考虑集合 A=的情况,体现了分类讨论思想的应用23【答案】 【解析】(本题满分为 12 分)解:(1)在ABC 中,AD=5,AB=7,BD=8 ,由余弦定理得 = BDA=60(2)ADCD,BDC=30在ABC 中,由正弦定理得 ,精选高中模拟试卷第 14 页,共 15 页 24【答案】 【解析】证明:()在BCE 中,BC CF,BC=AD= ,BE=3 ,EC= ,在FCE 中,CF 2=EF2+CE2,EFCE 由已知条件知,DC平面 EFCB,DCEF ,又 DC 与 EC 相交于 C,EF平面 DCE解:()方法一:过点 B 作 BHEF 交 FE 的延长线于 H,连接 AH由
20、平面 ABCD平面 BEFC,平面 ABCD平面 BEFC=BC,ABBC ,得 AB平面 BEFC,从而 AHEF所以AHB 为二面角 AEFC 的平面角在 Rt CEF 中,因为 EF=2,CF=4EC=CEF=90,由 CEBH,得BHE=90,又在 RtBHE 中,BE=3,由二面角 AEFC 的平面角AHB=60,在 RtAHB 中,解得 ,所以当 时,二面角 AEFC 的大小为 60方法二:如图,以点 C 为坐标原点,以 CB,CF 和 CD 分别作为 x 轴,y 轴和 z 轴,建立空间直角坐标系Cxyz设 AB=a(a0),则 C(0,0,0),A( ,0,a),B( ,0,0),E( ,3,0),F(0,4,0)从而 ,设平面 AEF 的法向量为 ,由 得, ,取 x=1,则 ,即 ,精选高中模拟试卷第 15 页,共 15 页不妨设平面 EFCB 的法向量为 ,由条件,得解得 所以当 时,二面角 AEFC 的大小为 60【点评】本题考查的知识点是用空间向量求平面间的夹角,其中(I)的关键是熟练掌握线线垂直、线面垂直与面面垂直的之间的相互转化,(II)的关键是建立空间坐标系,将二面角问题,转化为向量的夹角问题