收藏 分享(赏)

蓬安县实验中学2018-2019学年高二上学期第二次月考试卷数学.doc

上传人:爱你没说的 文档编号:9525568 上传时间:2019-08-12 格式:DOC 页数:17 大小:771.50KB
下载 相关 举报
蓬安县实验中学2018-2019学年高二上学期第二次月考试卷数学.doc_第1页
第1页 / 共17页
蓬安县实验中学2018-2019学年高二上学期第二次月考试卷数学.doc_第2页
第2页 / 共17页
蓬安县实验中学2018-2019学年高二上学期第二次月考试卷数学.doc_第3页
第3页 / 共17页
蓬安县实验中学2018-2019学年高二上学期第二次月考试卷数学.doc_第4页
第4页 / 共17页
蓬安县实验中学2018-2019学年高二上学期第二次月考试卷数学.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 17 页蓬安县实验中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知三棱锥 ABCO ,OA 、OB、OC 两两垂直且长度均为 6,长为 2 的线段 MN 的一个端点 M 在棱 OA上运动,另一个端点 N 在 BCO 内运动(含边界),则 MN 的中点 P 的轨迹与三棱锥的面所围成的几何体的体积为( )A B 或 36+ C36 D 或 362 设数列a n的前 n 项和为 Sn,若 Sn=n2+2n(nN *),则 + + =( )A B C D3 双曲线: 的渐近线方程和离心率分别是( )A B C D4 若

2、,则 等于( )A B C D5 江岸边有一炮台高 30 米,江中有两条船,由炮台顶部测得俯角分别为 45和 30,而且两条船与炮台底部连线成 30角,则两条船相距( )A10 米 B100 米 C30 米 D20 米6 下列图象中,不能作为函数 y=f(x)的图象的是( )精选高中模拟试卷第 2 页,共 17 页A B CD7 函数 的最小正周期不大于 2,则正整数 k 的最小值应该是( )A10 B11 C12 D138 若点 O 和点 F( 2,0)分别是双曲线 的中心和左焦点,点 P 为双曲线右支上的任意一点,则 的取值范围为( )A B C D9 设抛物线 C:y 2=2px(p0)

3、的焦点为 F,点 M 在 C 上,|MF|=5,若以 MF 为直径的圆过点(0,2),则 C 的方程为( )Ay 2=4x 或 y2=8x By 2=2x 或 y2=8xCy 2=4x 或 y2=16x Dy 2=2x 或 y2=16x10已知集合 A,B,C 中, AB,A C,若 B=0,1,2,3,C=0,2,4,则 A 的子集最多有( )A2 个 B4 个 C6 个 D8 个11某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为( )A程序流程图 B工序流程图 C知识结构图 D组织结构图精选高中模拟试卷第 3 页,共 17 页12459 和 357 的最大公约数(

4、 )A3 B9 C17 D51二、填空题13已知奇函数 f(x)的定义域为 2,2 ,且在定义域上单调递减,则满足不等式 f(1m )+f(12m)0的实数 m 的取值范围是 14已知复数 ,则 1+z50+z100= 15已知 ,则不等式 的解集为_,0()1xef=【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力16设函数 f(x)= ,则 f(f(2)的值为 17已知圆 O:x 2+y2=1 和双曲线 C: =1(a0,b0)若对双曲线 C 上任意一点 A(点 A 在圆 O外),均存在与圆 O 外切且顶点都在双曲线 C 上的菱形 ABCD,则 =

5、 18如图是一个正方体的展开图,在原正方体中直线 AB 与 CD 的位置关系是 三、解答题精选高中模拟试卷第 4 页,共 17 页19在平面直角坐标系 xOy 中,经过点 且斜率为 k 的直线 l 与椭圆 有两个不同的交点P 和 Q()求 k 的取值范围;()设椭圆与 x 轴正半轴、y 轴正半轴的交点分别为 A,B,是否存在常数 k,使得向量 与 共线?如果存在,求 k 值;如果不存在,请说明理由20(本小题满分 13 分)在四棱锥 中,底面 是直角梯形, , , ,PABCDAB/ABDC22AD3()在棱 上确定一点 ,使得 平面 ;E/CP()若 , ,求直线 与平面 所成角的大小6PA

6、BCD精选高中模拟试卷第 5 页,共 17 页21已知 f(x)=x 2+ax+a(a 2,xR ),g(x)=e x,(x)= ()当 a=1 时,求 (x)的单调区间;()求 (x )在 x1,+)是递减的,求实数 a 的取值范围;()是否存在实数 a,使 (x)的极大值为 3?若存在,求 a 的值;若不存在,请说明理由22如图,点 A 是单位圆与 x 轴正半轴的交点,B( , )(I)若AOB=,求 cos+sin的值;(II)设点 P 为单位圆上的一个动点,点 Q 满足 = + 若 AOP=2, 表示| |,并求| |的最大值精选高中模拟试卷第 6 页,共 17 页23已知 F1,F

7、2分别是椭圆 =1(9m 0)的左右焦点, P 是该椭圆上一定点,若点 P 在第一象限,且|PF 1|=4,PF 1PF2()求 m 的值;()求点 P 的坐标24在直接坐标系 中,直线 的方程为 ,曲线 的参数方程为 ( 为参数)。(1)已知在极坐标(与直角坐标系 取相同的长度单位,且以原点 为极点,以 轴正半轴为极轴)中,点 的极坐标为(4, ),判断点 与直线 的位置关系;(2)设点 是曲线 上的一个动点,求它到直线 的距离的最小值。精选高中模拟试卷第 7 页,共 17 页蓬安县实验中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】D【解析】【分

8、析】由于长为 2 的线段 MN 的一个端点 M 在棱 OA 上运动,另一个端点 N 在BCO 内运动(含边界),有空间想象能力可知 MN 的中点 P 的轨迹为以 O 为球心,以 1 为半径的球体,故 MN 的中点 P 的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可【解答】解:因为长为 2 的线段 MN 的一个端点 M 在棱 OA 上运动,另一个端点 N 在BCO 内运动(含边界),有空间想象能力可知 MN 的中点 P 的轨迹为以 O 为球心,以 1 为半径的球体,则 MN 的中点 P 的轨迹与三棱锥的面所围成的几何体可能为该球体的 或该三棱锥减去此球体的 ,即: 或故

9、选 D2 【答案】D【解析】解:S n=n2+2n(n N*),当 n=1 时,a 1=S1=3;当 n2 时,a n=SnSn1=(n 2+2n)(n1)2+2(n 1)=2n+1 = = , + + = + += 故选:D【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题3 【答案】D【解析】解:双曲线: 的 a=1,b=2,c= =双曲线的渐近线方程为 y= x=2x;离心率 e= =故选 D4 【答案】B精选高中模拟试卷第 8 页,共 17 页【解析】解: , ,(1, 2)=m(1,1)+n(1, 1)=(m+n,m n)m+n= 1,mn=2,m=

10、,n= ,故选 B【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题等5 【答案】C【解析】解:如图,过炮台顶部 A 作水平面的垂线,垂足为 B,设 A 处观测小船 C 的俯角为 45,设 A 处观测小船 D 的俯角为 30,连接 BC、BDRtABC 中,ACB=45,可得 BC=AB=30 米RtABD 中,ADB=30 ,可得 BD= AB=30 米在BCD 中,BC=30 米,BD=30 米,CBD=30,由余弦定理可得:CD2=BC2+BD22BCBDcos30=900CD=30 米(

11、负值舍去)故选:C【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离着重考查了余弦定理、空间线面的位置关系等知识,属于中档题熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键6 【答案】B精选高中模拟试卷第 9 页,共 17 页【解析】解:根据函数的定义可知,对应定义域内的任意变量 x 只能有唯一的 y 与 x 对应,选项 B 中,当x0 时,有两个不同的 y 和 x 对应,所以不满足 y 值的唯一性所以 B 不能作为函数图象故选 B【点评】本题主要考查函数图象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集,定义域内 x 的任意性,x 对应 y 值的

12、唯一性7 【答案】D【解析】解:函数 y=cos( x+ )的最小正周期不大于 2,T= 2,即|k| 4,则正整数 k 的最小值为 13故选 D【点评】此题考查了三角函数的周期性及其求法,熟练掌握周期公式是解本题的关键8 【答案】B【解析】解:因为 F( 2,0)是已知双曲线的左焦点,所以 a2+1=4,即 a2=3,所以双曲线方程为 ,设点 P(x 0,y 0),则有 ,解得 ,因为 , ,所以 =x0(x 0+2)+ = ,此二次函数对应的抛物线的对称轴为 ,因为 ,所以当 时, 取得最小值 = ,故 的取值范围是 ,故选 B精选高中模拟试卷第 10 页,共 17 页【点评】本题考查待定

13、系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力9 【答案】 C【解析】解:抛物线 C 方程为 y2=2px(p0),焦点 F 坐标为( ,0),可得 |OF|= ,以 MF 为直径的圆过点( 0,2),设 A(0,2),可得 AFAM ,RtAOF 中, |AF|= = ,sinOAF= = ,根据抛物线的定义,得直线 AO 切以 MF 为直径的圆于 A 点,OAF= AMF,可得 RtAMF 中,sinAMF= = ,|MF|=5 ,|AF|= = ,整理得 4+ = ,解之可得 p=2 或 p=

14、8因此,抛物线 C 的方程为 y2=4x 或 y2=16x故选:C方法二:抛物线 C 方程为 y2=2px(p0),焦点 F( ,0),设 M(x,y),由抛物线性质|MF|=x+ =5,可得 x=5 ,因为圆心是 MF 的中点,所以根据中点坐标公式可得,圆心横坐标为 = ,精选高中模拟试卷第 11 页,共 17 页由已知圆半径也为 ,据此可知该圆与 y 轴相切于点(0,2),故圆心纵坐标为 2,则 M 点纵坐标为 4,即 M(5 ,4),代入抛物线方程得 p210p+16=0,所以 p=2 或 p=8所以抛物线 C 的方程为 y2=4x 或 y2=16x故答案 C【点评】本题给出抛物线一条长

15、度为 5 的焦半径 MF,以 MF 为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题10【答案】B【解析】解:因为 B=0,1,2,3 ,C=0,2,4,且 AB ,A C ;A BC=0,2集合 A 可能为0,2,即最多有 2 个元素,故最多有 4 个子集故选:B11【答案】D【解析】解:用来描述系统结构的图示是结构图,某单位综合治理领导小组成员之问的领导关系可以用组织结构图表示故选 D【点评】本题考查结构图和流程图的概念,是基础题解题时要认真审题,仔细解答12【答案】D【解析】解:459 357=1102,精选

16、高中模拟试卷第 12 页,共 17 页357102=351,10251=2,459 和 357 的最大公约数是 51,故选:D【点评】本题考查辗转相除法,这是一个算法案例,还有一个求最大公约数的方法是更相减损法,这种题目出现的比较少,但是要掌握题目的解法本题也可以验证得到结果二、填空题13【答案】 , 【解析】解:函数奇函数 f(x)的定义域为 2,2 ,且在定义域上单调递减,不等式 f(1m)+f(1 2m)0 等价为 f(1m)f(1 2m)=f(2m1),即 ,即 ,得 m ,故答案为: , 【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键注意定义域的限制

17、14【答案】 i 【解析】解:复数 ,所以 z2=i,又 i2=1,所以 1+z50+z100=1+i25+i50=1+i1=i;故答案为:i【点评】本题考查了虚数单位 i 的性质运用;注意 i2=115【答案】 (2,1)-【解析】函数 在 递增,当 时, ,解得 ;当 时, ,fx0+0x20x-解得 ,综上所述,不等式 的解集为 02()(ff-(,1)16【答案】 4 精选高中模拟试卷第 13 页,共 17 页【解析】解:函数 f(x)= ,f( 2)=4 2= ,f(f( 2)=f( )= =4故答案为:417【答案】 1 【解析】解:若对双曲线 C 上任意一点 A(点 A 在圆 O

18、 外),均存在与圆 O 外切且顶点都在双曲线 C 上的菱形 ABCD,可通过特殊点,取 A(1,t),则 B(1,t),C(1,t ),D(1,t ),由直线和圆相切的条件可得,t=1将 A(1,1)代入双曲线方程,可得 =1故答案为:1【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题18【答案】 异面 【解析】解:把展开图还原原正方体如图,在原正方体中直线 AB 与 CD 的位置关系是异面故答案为:异面三、解答题精选高中模拟试卷第 14 页,共 17 页19【答案】 【解析】解:()由已知条件,直线 l 的方程为 ,代入椭圆方程得 整理得 直线 l 与椭圆有两个不同

19、的交点 P 和 Q,等价于的判别式= ,解得 或 即 k 的取值范围为 ()设 P(x 1,y 1),Q(x 2,y 2),则 ,由方程, 又 而 所以 与 共线等价于 ,将代入上式,解得 由()知 或 ,故没有符合题意的常数 k【点评】本题主要考查直线和椭圆相交的性质,2 个向量共线的条件,体现了转化的数学而思想,属于中档题20【答案】 【解析】解: ()当 时, 平面 .13PEB/CPAD设 为 上一点,且 ,连结 、 、 ,FAFAFE那么 , ./EB , , , , DC13/EDC/CFD又 平面 , 平面 , 平面 (5 分)PAFPA/PA()设 、 分别为 、 的中点,连结

20、 、 、 ,OGBOG精选高中模拟试卷第 15 页,共 17 页 , ,易知 , 平面 , PBCGBOBCPOGBCP又 , , 平面 (8 分)ADPAAD建立空间直角坐标系 (如图),其中 轴 , 轴 ,则有 , ,xyzx/y/A(1,0)(2)B由 知 (9 分)(1,20)222(6)(0,2)设平面 的法向量为 , ,B(,n1,PBur则 即 ,取 .nPC02xyz()n设直线 与平面 所成角为 , ,则 ,A1,2Aur |3sin|co,2APn , 直线 与平面 所成角为 . (13 分)3PBD3ABCDGOEFxyz21【答案】 【解析】解:(I)当 a=1 时,

21、(x)=(x 2+x+1)e x(x)=e x(x 2+x)当 ( x)0 时,0x1;当 (x)0 时,x1 或 x0(x)单调减区间为( ,0),(1,+),单调增区间为(0,1);(II)(x)=e xx2+(2a)x(x)在 x 1,+)是递减的,(x)0 在 x1,+)恒成立,x2+(2a)x0 在 x1,+)恒成立,2ax 在 x1,+ )恒成立,2a1a1a2,1a2;(III)(x)=(2x+a)e xex(x 2+ax+a)=e xx2+(2a )x精选高中模拟试卷第 16 页,共 17 页令 ( x)=0 ,得 x=0 或 x=2a:由表可知,( x) 极大 =(2 a)=

22、(4a)e a2设 (a)=(4 a)e a2,(a)=(3a )e a20,(a)在(,2)上是增函数,(a)(2 )=2 3,即(4a )e a23,不存在实数 a,使 (x)极大值为 322【答案】 【解析】 解:()点 A 是单位圆与 x 轴正半轴的交点,B( , )可得 sin= , cos= , cos+sin= ()因为 P(cos2,sin2),A (1,0)所以 = =(1+cos2 ,sin2 ),所以 = = =2|cos|,因为 ,所以 =2|cos| ,| |的最大值 【点评】本题考查三角函数的定义的应用,三角函数最值的求法,考查计算能力23【答案】 【解析】解:()由已知得:|PF 2|=64=2,在PF 1F2中,由勾股定理得, ,即 4c2=20,解得 c2=5m=95=4;()设 P 点坐标为(x 0,y 0),由()知, , , , , ,解得 精选高中模拟试卷第 17 页,共 17 页P( )【点评】本题考查椭圆方程的求法,考查了椭圆的简单性质,属中档题24【答案】(1)点 P 在直线 上(2)【解析】(1)把极坐标系下的点 化为直角坐标,得 P(0,4 )。因为点 P 的直角坐标( 0,4)满足直线 的方程 ,所以点 P 在直线 上,(2)因为点 Q 在曲线 C 上,故可设点 Q 的坐标为 ,从而点 Q 到直线 的距离为,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 试题课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报